Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as sqlglot.expressions.select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14
  15import datetime
  16import math
  17import numbers
  18import re
  19import textwrap
  20import typing as t
  21from collections import deque
  22from copy import deepcopy
  23from decimal import Decimal
  24from enum import auto
  25from functools import reduce
  26
  27from sqlglot.errors import ErrorLevel, ParseError
  28from sqlglot.helper import (
  29    AutoName,
  30    camel_to_snake_case,
  31    ensure_collection,
  32    ensure_list,
  33    seq_get,
  34    split_num_words,
  35    subclasses,
  36    to_bool,
  37)
  38from sqlglot.tokens import Token, TokenError
  39
  40if t.TYPE_CHECKING:
  41    from typing_extensions import Self
  42
  43    from sqlglot._typing import E, Lit
  44    from sqlglot.dialects.dialect import DialectType
  45
  46    Q = t.TypeVar("Q", bound="Query")
  47    S = t.TypeVar("S", bound="SetOperation")
  48
  49
  50class _Expression(type):
  51    def __new__(cls, clsname, bases, attrs):
  52        klass = super().__new__(cls, clsname, bases, attrs)
  53
  54        # When an Expression class is created, its key is automatically set
  55        # to be the lowercase version of the class' name.
  56        klass.key = clsname.lower()
  57
  58        # This is so that docstrings are not inherited in pdoc
  59        klass.__doc__ = klass.__doc__ or ""
  60
  61        return klass
  62
  63
  64SQLGLOT_META = "sqlglot.meta"
  65SQLGLOT_ANONYMOUS = "sqlglot.anonymous"
  66TABLE_PARTS = ("this", "db", "catalog")
  67COLUMN_PARTS = ("this", "table", "db", "catalog")
  68POSITION_META_KEYS = ("line", "col", "start", "end")
  69
  70
  71class Expression(metaclass=_Expression):
  72    """
  73    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  74    context, such as its child expressions, their names (arg keys), and whether a given child expression
  75    is optional or not.
  76
  77    Attributes:
  78        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  79            and representing expressions as strings.
  80        arg_types: determines the arguments (child nodes) supported by an expression. It maps
  81            arg keys to booleans that indicate whether the corresponding args are optional.
  82        parent: a reference to the parent expression (or None, in case of root expressions).
  83        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  84            uses to refer to it.
  85        index: the index of an expression if it is inside of a list argument in its parent.
  86        comments: a list of comments that are associated with a given expression. This is used in
  87            order to preserve comments when transpiling SQL code.
  88        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  89            optimizer, in order to enable some transformations that require type information.
  90        meta: a dictionary that can be used to store useful metadata for a given expression.
  91
  92    Example:
  93        >>> class Foo(Expression):
  94        ...     arg_types = {"this": True, "expression": False}
  95
  96        The above definition informs us that Foo is an Expression that requires an argument called
  97        "this" and may also optionally receive an argument called "expression".
  98
  99    Args:
 100        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 101    """
 102
 103    key = "expression"
 104    arg_types = {"this": True}
 105    __slots__ = ("args", "parent", "arg_key", "index", "comments", "_type", "_meta", "_hash")
 106
 107    def __init__(self, **args: t.Any):
 108        self.args: t.Dict[str, t.Any] = args
 109        self.parent: t.Optional[Expression] = None
 110        self.arg_key: t.Optional[str] = None
 111        self.index: t.Optional[int] = None
 112        self.comments: t.Optional[t.List[str]] = None
 113        self._type: t.Optional[DataType] = None
 114        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 115        self._hash: t.Optional[int] = None
 116
 117        for arg_key, value in self.args.items():
 118            self._set_parent(arg_key, value)
 119
 120    def __eq__(self, other) -> bool:
 121        return type(self) is type(other) and hash(self) == hash(other)
 122
 123    @property
 124    def hashable_args(self) -> t.Any:
 125        return frozenset(
 126            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
 127            for k, v in self.args.items()
 128            if not (v is None or v is False or (type(v) is list and not v))
 129        )
 130
 131    def __hash__(self) -> int:
 132        if self._hash is not None:
 133            return self._hash
 134
 135        return hash((self.__class__, self.hashable_args))
 136
 137    @property
 138    def this(self) -> t.Any:
 139        """
 140        Retrieves the argument with key "this".
 141        """
 142        return self.args.get("this")
 143
 144    @property
 145    def expression(self) -> t.Any:
 146        """
 147        Retrieves the argument with key "expression".
 148        """
 149        return self.args.get("expression")
 150
 151    @property
 152    def expressions(self) -> t.List[t.Any]:
 153        """
 154        Retrieves the argument with key "expressions".
 155        """
 156        return self.args.get("expressions") or []
 157
 158    def text(self, key) -> str:
 159        """
 160        Returns a textual representation of the argument corresponding to "key". This can only be used
 161        for args that are strings or leaf Expression instances, such as identifiers and literals.
 162        """
 163        field = self.args.get(key)
 164        if isinstance(field, str):
 165            return field
 166        if isinstance(field, (Identifier, Literal, Var)):
 167            return field.this
 168        if isinstance(field, (Star, Null)):
 169            return field.name
 170        return ""
 171
 172    @property
 173    def is_string(self) -> bool:
 174        """
 175        Checks whether a Literal expression is a string.
 176        """
 177        return isinstance(self, Literal) and self.args["is_string"]
 178
 179    @property
 180    def is_number(self) -> bool:
 181        """
 182        Checks whether a Literal expression is a number.
 183        """
 184        return (isinstance(self, Literal) and not self.args["is_string"]) or (
 185            isinstance(self, Neg) and self.this.is_number
 186        )
 187
 188    def to_py(self) -> t.Any:
 189        """
 190        Returns a Python object equivalent of the SQL node.
 191        """
 192        raise ValueError(f"{self} cannot be converted to a Python object.")
 193
 194    @property
 195    def is_int(self) -> bool:
 196        """
 197        Checks whether an expression is an integer.
 198        """
 199        return self.is_number and isinstance(self.to_py(), int)
 200
 201    @property
 202    def is_star(self) -> bool:
 203        """Checks whether an expression is a star."""
 204        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 205
 206    @property
 207    def alias(self) -> str:
 208        """
 209        Returns the alias of the expression, or an empty string if it's not aliased.
 210        """
 211        if isinstance(self.args.get("alias"), TableAlias):
 212            return self.args["alias"].name
 213        return self.text("alias")
 214
 215    @property
 216    def alias_column_names(self) -> t.List[str]:
 217        table_alias = self.args.get("alias")
 218        if not table_alias:
 219            return []
 220        return [c.name for c in table_alias.args.get("columns") or []]
 221
 222    @property
 223    def name(self) -> str:
 224        return self.text("this")
 225
 226    @property
 227    def alias_or_name(self) -> str:
 228        return self.alias or self.name
 229
 230    @property
 231    def output_name(self) -> str:
 232        """
 233        Name of the output column if this expression is a selection.
 234
 235        If the Expression has no output name, an empty string is returned.
 236
 237        Example:
 238            >>> from sqlglot import parse_one
 239            >>> parse_one("SELECT a").expressions[0].output_name
 240            'a'
 241            >>> parse_one("SELECT b AS c").expressions[0].output_name
 242            'c'
 243            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 244            ''
 245        """
 246        return ""
 247
 248    @property
 249    def type(self) -> t.Optional[DataType]:
 250        return self._type
 251
 252    @type.setter
 253    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 254        if dtype and not isinstance(dtype, DataType):
 255            dtype = DataType.build(dtype)
 256        self._type = dtype  # type: ignore
 257
 258    def is_type(self, *dtypes) -> bool:
 259        return self.type is not None and self.type.is_type(*dtypes)
 260
 261    def is_leaf(self) -> bool:
 262        return not any(isinstance(v, (Expression, list)) for v in self.args.values())
 263
 264    @property
 265    def meta(self) -> t.Dict[str, t.Any]:
 266        if self._meta is None:
 267            self._meta = {}
 268        return self._meta
 269
 270    def __deepcopy__(self, memo):
 271        root = self.__class__()
 272        stack = [(self, root)]
 273
 274        while stack:
 275            node, copy = stack.pop()
 276
 277            if node.comments is not None:
 278                copy.comments = deepcopy(node.comments)
 279            if node._type is not None:
 280                copy._type = deepcopy(node._type)
 281            if node._meta is not None:
 282                copy._meta = deepcopy(node._meta)
 283            if node._hash is not None:
 284                copy._hash = node._hash
 285
 286            for k, vs in node.args.items():
 287                if hasattr(vs, "parent"):
 288                    stack.append((vs, vs.__class__()))
 289                    copy.set(k, stack[-1][-1])
 290                elif type(vs) is list:
 291                    copy.args[k] = []
 292
 293                    for v in vs:
 294                        if hasattr(v, "parent"):
 295                            stack.append((v, v.__class__()))
 296                            copy.append(k, stack[-1][-1])
 297                        else:
 298                            copy.append(k, v)
 299                else:
 300                    copy.args[k] = vs
 301
 302        return root
 303
 304    def copy(self) -> Self:
 305        """
 306        Returns a deep copy of the expression.
 307        """
 308        return deepcopy(self)
 309
 310    def add_comments(self, comments: t.Optional[t.List[str]] = None, prepend: bool = False) -> None:
 311        if self.comments is None:
 312            self.comments = []
 313
 314        if comments:
 315            for comment in comments:
 316                _, *meta = comment.split(SQLGLOT_META)
 317                if meta:
 318                    for kv in "".join(meta).split(","):
 319                        k, *v = kv.split("=")
 320                        value = v[0].strip() if v else True
 321                        self.meta[k.strip()] = to_bool(value)
 322
 323                if not prepend:
 324                    self.comments.append(comment)
 325
 326            if prepend:
 327                self.comments = comments + self.comments
 328
 329    def pop_comments(self) -> t.List[str]:
 330        comments = self.comments or []
 331        self.comments = None
 332        return comments
 333
 334    def append(self, arg_key: str, value: t.Any) -> None:
 335        """
 336        Appends value to arg_key if it's a list or sets it as a new list.
 337
 338        Args:
 339            arg_key (str): name of the list expression arg
 340            value (Any): value to append to the list
 341        """
 342        if type(self.args.get(arg_key)) is not list:
 343            self.args[arg_key] = []
 344        self._set_parent(arg_key, value)
 345        values = self.args[arg_key]
 346        if hasattr(value, "parent"):
 347            value.index = len(values)
 348        values.append(value)
 349
 350    def set(
 351        self,
 352        arg_key: str,
 353        value: t.Any,
 354        index: t.Optional[int] = None,
 355        overwrite: bool = True,
 356    ) -> None:
 357        """
 358        Sets arg_key to value.
 359
 360        Args:
 361            arg_key: name of the expression arg.
 362            value: value to set the arg to.
 363            index: if the arg is a list, this specifies what position to add the value in it.
 364            overwrite: assuming an index is given, this determines whether to overwrite the
 365                list entry instead of only inserting a new value (i.e., like list.insert).
 366        """
 367        if index is not None:
 368            expressions = self.args.get(arg_key) or []
 369
 370            if seq_get(expressions, index) is None:
 371                return
 372            if value is None:
 373                expressions.pop(index)
 374                for v in expressions[index:]:
 375                    v.index = v.index - 1
 376                return
 377
 378            if isinstance(value, list):
 379                expressions.pop(index)
 380                expressions[index:index] = value
 381            elif overwrite:
 382                expressions[index] = value
 383            else:
 384                expressions.insert(index, value)
 385
 386            value = expressions
 387        elif value is None:
 388            self.args.pop(arg_key, None)
 389            return
 390
 391        self.args[arg_key] = value
 392        self._set_parent(arg_key, value, index)
 393
 394    def _set_parent(self, arg_key: str, value: t.Any, index: t.Optional[int] = None) -> None:
 395        if hasattr(value, "parent"):
 396            value.parent = self
 397            value.arg_key = arg_key
 398            value.index = index
 399        elif type(value) is list:
 400            for index, v in enumerate(value):
 401                if hasattr(v, "parent"):
 402                    v.parent = self
 403                    v.arg_key = arg_key
 404                    v.index = index
 405
 406    @property
 407    def depth(self) -> int:
 408        """
 409        Returns the depth of this tree.
 410        """
 411        if self.parent:
 412            return self.parent.depth + 1
 413        return 0
 414
 415    def iter_expressions(self, reverse: bool = False) -> t.Iterator[Expression]:
 416        """Yields the key and expression for all arguments, exploding list args."""
 417        for vs in reversed(self.args.values()) if reverse else self.args.values():  # type: ignore
 418            if type(vs) is list:
 419                for v in reversed(vs) if reverse else vs:  # type: ignore
 420                    if hasattr(v, "parent"):
 421                        yield v
 422            else:
 423                if hasattr(vs, "parent"):
 424                    yield vs
 425
 426    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 427        """
 428        Returns the first node in this tree which matches at least one of
 429        the specified types.
 430
 431        Args:
 432            expression_types: the expression type(s) to match.
 433            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 434
 435        Returns:
 436            The node which matches the criteria or None if no such node was found.
 437        """
 438        return next(self.find_all(*expression_types, bfs=bfs), None)
 439
 440    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 441        """
 442        Returns a generator object which visits all nodes in this tree and only
 443        yields those that match at least one of the specified expression types.
 444
 445        Args:
 446            expression_types: the expression type(s) to match.
 447            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 448
 449        Returns:
 450            The generator object.
 451        """
 452        for expression in self.walk(bfs=bfs):
 453            if isinstance(expression, expression_types):
 454                yield expression
 455
 456    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 457        """
 458        Returns a nearest parent matching expression_types.
 459
 460        Args:
 461            expression_types: the expression type(s) to match.
 462
 463        Returns:
 464            The parent node.
 465        """
 466        ancestor = self.parent
 467        while ancestor and not isinstance(ancestor, expression_types):
 468            ancestor = ancestor.parent
 469        return ancestor  # type: ignore
 470
 471    @property
 472    def parent_select(self) -> t.Optional[Select]:
 473        """
 474        Returns the parent select statement.
 475        """
 476        return self.find_ancestor(Select)
 477
 478    @property
 479    def same_parent(self) -> bool:
 480        """Returns if the parent is the same class as itself."""
 481        return type(self.parent) is self.__class__
 482
 483    def root(self) -> Expression:
 484        """
 485        Returns the root expression of this tree.
 486        """
 487        expression = self
 488        while expression.parent:
 489            expression = expression.parent
 490        return expression
 491
 492    def walk(
 493        self, bfs: bool = True, prune: t.Optional[t.Callable[[Expression], bool]] = None
 494    ) -> t.Iterator[Expression]:
 495        """
 496        Returns a generator object which visits all nodes in this tree.
 497
 498        Args:
 499            bfs: if set to True the BFS traversal order will be applied,
 500                otherwise the DFS traversal will be used instead.
 501            prune: callable that returns True if the generator should stop traversing
 502                this branch of the tree.
 503
 504        Returns:
 505            the generator object.
 506        """
 507        if bfs:
 508            yield from self.bfs(prune=prune)
 509        else:
 510            yield from self.dfs(prune=prune)
 511
 512    def dfs(
 513        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 514    ) -> t.Iterator[Expression]:
 515        """
 516        Returns a generator object which visits all nodes in this tree in
 517        the DFS (Depth-first) order.
 518
 519        Returns:
 520            The generator object.
 521        """
 522        stack = [self]
 523
 524        while stack:
 525            node = stack.pop()
 526
 527            yield node
 528
 529            if prune and prune(node):
 530                continue
 531
 532            for v in node.iter_expressions(reverse=True):
 533                stack.append(v)
 534
 535    def bfs(
 536        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 537    ) -> t.Iterator[Expression]:
 538        """
 539        Returns a generator object which visits all nodes in this tree in
 540        the BFS (Breadth-first) order.
 541
 542        Returns:
 543            The generator object.
 544        """
 545        queue = deque([self])
 546
 547        while queue:
 548            node = queue.popleft()
 549
 550            yield node
 551
 552            if prune and prune(node):
 553                continue
 554
 555            for v in node.iter_expressions():
 556                queue.append(v)
 557
 558    def unnest(self):
 559        """
 560        Returns the first non parenthesis child or self.
 561        """
 562        expression = self
 563        while type(expression) is Paren:
 564            expression = expression.this
 565        return expression
 566
 567    def unalias(self):
 568        """
 569        Returns the inner expression if this is an Alias.
 570        """
 571        if isinstance(self, Alias):
 572            return self.this
 573        return self
 574
 575    def unnest_operands(self):
 576        """
 577        Returns unnested operands as a tuple.
 578        """
 579        return tuple(arg.unnest() for arg in self.iter_expressions())
 580
 581    def flatten(self, unnest=True):
 582        """
 583        Returns a generator which yields child nodes whose parents are the same class.
 584
 585        A AND B AND C -> [A, B, C]
 586        """
 587        for node in self.dfs(prune=lambda n: n.parent and type(n) is not self.__class__):
 588            if type(node) is not self.__class__:
 589                yield node.unnest() if unnest and not isinstance(node, Subquery) else node
 590
 591    def __str__(self) -> str:
 592        return self.sql()
 593
 594    def __repr__(self) -> str:
 595        return _to_s(self)
 596
 597    def to_s(self) -> str:
 598        """
 599        Same as __repr__, but includes additional information which can be useful
 600        for debugging, like empty or missing args and the AST nodes' object IDs.
 601        """
 602        return _to_s(self, verbose=True)
 603
 604    def sql(self, dialect: DialectType = None, **opts) -> str:
 605        """
 606        Returns SQL string representation of this tree.
 607
 608        Args:
 609            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 610            opts: other `sqlglot.generator.Generator` options.
 611
 612        Returns:
 613            The SQL string.
 614        """
 615        from sqlglot.dialects import Dialect
 616
 617        return Dialect.get_or_raise(dialect).generate(self, **opts)
 618
 619    def transform(self, fun: t.Callable, *args: t.Any, copy: bool = True, **kwargs) -> Expression:
 620        """
 621        Visits all tree nodes (excluding already transformed ones)
 622        and applies the given transformation function to each node.
 623
 624        Args:
 625            fun: a function which takes a node as an argument and returns a
 626                new transformed node or the same node without modifications. If the function
 627                returns None, then the corresponding node will be removed from the syntax tree.
 628            copy: if set to True a new tree instance is constructed, otherwise the tree is
 629                modified in place.
 630
 631        Returns:
 632            The transformed tree.
 633        """
 634        root = None
 635        new_node = None
 636
 637        for node in (self.copy() if copy else self).dfs(prune=lambda n: n is not new_node):
 638            parent, arg_key, index = node.parent, node.arg_key, node.index
 639            new_node = fun(node, *args, **kwargs)
 640
 641            if not root:
 642                root = new_node
 643            elif parent and arg_key and new_node is not node:
 644                parent.set(arg_key, new_node, index)
 645
 646        assert root
 647        return root.assert_is(Expression)
 648
 649    @t.overload
 650    def replace(self, expression: E) -> E: ...
 651
 652    @t.overload
 653    def replace(self, expression: None) -> None: ...
 654
 655    def replace(self, expression):
 656        """
 657        Swap out this expression with a new expression.
 658
 659        For example::
 660
 661            >>> tree = Select().select("x").from_("tbl")
 662            >>> tree.find(Column).replace(column("y"))
 663            Column(
 664              this=Identifier(this=y, quoted=False))
 665            >>> tree.sql()
 666            'SELECT y FROM tbl'
 667
 668        Args:
 669            expression: new node
 670
 671        Returns:
 672            The new expression or expressions.
 673        """
 674        parent = self.parent
 675
 676        if not parent or parent is expression:
 677            return expression
 678
 679        key = self.arg_key
 680        value = parent.args.get(key)
 681
 682        if type(expression) is list and isinstance(value, Expression):
 683            # We are trying to replace an Expression with a list, so it's assumed that
 684            # the intention was to really replace the parent of this expression.
 685            value.parent.replace(expression)
 686        else:
 687            parent.set(key, expression, self.index)
 688
 689        if expression is not self:
 690            self.parent = None
 691            self.arg_key = None
 692            self.index = None
 693
 694        return expression
 695
 696    def pop(self: E) -> E:
 697        """
 698        Remove this expression from its AST.
 699
 700        Returns:
 701            The popped expression.
 702        """
 703        self.replace(None)
 704        return self
 705
 706    def assert_is(self, type_: t.Type[E]) -> E:
 707        """
 708        Assert that this `Expression` is an instance of `type_`.
 709
 710        If it is NOT an instance of `type_`, this raises an assertion error.
 711        Otherwise, this returns this expression.
 712
 713        Examples:
 714            This is useful for type security in chained expressions:
 715
 716            >>> import sqlglot
 717            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 718            'SELECT x, z FROM y'
 719        """
 720        if not isinstance(self, type_):
 721            raise AssertionError(f"{self} is not {type_}.")
 722        return self
 723
 724    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 725        """
 726        Checks if this expression is valid (e.g. all mandatory args are set).
 727
 728        Args:
 729            args: a sequence of values that were used to instantiate a Func expression. This is used
 730                to check that the provided arguments don't exceed the function argument limit.
 731
 732        Returns:
 733            A list of error messages for all possible errors that were found.
 734        """
 735        errors: t.List[str] = []
 736
 737        for k in self.args:
 738            if k not in self.arg_types:
 739                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 740        for k, mandatory in self.arg_types.items():
 741            v = self.args.get(k)
 742            if mandatory and (v is None or (isinstance(v, list) and not v)):
 743                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 744
 745        if (
 746            args
 747            and isinstance(self, Func)
 748            and len(args) > len(self.arg_types)
 749            and not self.is_var_len_args
 750        ):
 751            errors.append(
 752                f"The number of provided arguments ({len(args)}) is greater than "
 753                f"the maximum number of supported arguments ({len(self.arg_types)})"
 754            )
 755
 756        return errors
 757
 758    def dump(self):
 759        """
 760        Dump this Expression to a JSON-serializable dict.
 761        """
 762        from sqlglot.serde import dump
 763
 764        return dump(self)
 765
 766    @classmethod
 767    def load(cls, obj):
 768        """
 769        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 770        """
 771        from sqlglot.serde import load
 772
 773        return load(obj)
 774
 775    def and_(
 776        self,
 777        *expressions: t.Optional[ExpOrStr],
 778        dialect: DialectType = None,
 779        copy: bool = True,
 780        wrap: bool = True,
 781        **opts,
 782    ) -> Condition:
 783        """
 784        AND this condition with one or multiple expressions.
 785
 786        Example:
 787            >>> condition("x=1").and_("y=1").sql()
 788            'x = 1 AND y = 1'
 789
 790        Args:
 791            *expressions: the SQL code strings to parse.
 792                If an `Expression` instance is passed, it will be used as-is.
 793            dialect: the dialect used to parse the input expression.
 794            copy: whether to copy the involved expressions (only applies to Expressions).
 795            wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
 796                precedence issues, but can be turned off when the produced AST is too deep and
 797                causes recursion-related issues.
 798            opts: other options to use to parse the input expressions.
 799
 800        Returns:
 801            The new And condition.
 802        """
 803        return and_(self, *expressions, dialect=dialect, copy=copy, wrap=wrap, **opts)
 804
 805    def or_(
 806        self,
 807        *expressions: t.Optional[ExpOrStr],
 808        dialect: DialectType = None,
 809        copy: bool = True,
 810        wrap: bool = True,
 811        **opts,
 812    ) -> Condition:
 813        """
 814        OR this condition with one or multiple expressions.
 815
 816        Example:
 817            >>> condition("x=1").or_("y=1").sql()
 818            'x = 1 OR y = 1'
 819
 820        Args:
 821            *expressions: the SQL code strings to parse.
 822                If an `Expression` instance is passed, it will be used as-is.
 823            dialect: the dialect used to parse the input expression.
 824            copy: whether to copy the involved expressions (only applies to Expressions).
 825            wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
 826                precedence issues, but can be turned off when the produced AST is too deep and
 827                causes recursion-related issues.
 828            opts: other options to use to parse the input expressions.
 829
 830        Returns:
 831            The new Or condition.
 832        """
 833        return or_(self, *expressions, dialect=dialect, copy=copy, wrap=wrap, **opts)
 834
 835    def not_(self, copy: bool = True):
 836        """
 837        Wrap this condition with NOT.
 838
 839        Example:
 840            >>> condition("x=1").not_().sql()
 841            'NOT x = 1'
 842
 843        Args:
 844            copy: whether to copy this object.
 845
 846        Returns:
 847            The new Not instance.
 848        """
 849        return not_(self, copy=copy)
 850
 851    def update_positions(
 852        self: E, other: t.Optional[Token | Expression] = None, **kwargs: t.Any
 853    ) -> E:
 854        """
 855        Update this expression with positions from a token or other expression.
 856
 857        Args:
 858            other: a token or expression to update this expression with.
 859
 860        Returns:
 861            The updated expression.
 862        """
 863        if isinstance(other, Expression):
 864            self.meta.update({k: v for k, v in other.meta.items() if k in POSITION_META_KEYS})
 865        elif other is not None:
 866            self.meta.update(
 867                {
 868                    "line": other.line,
 869                    "col": other.col,
 870                    "start": other.start,
 871                    "end": other.end,
 872                }
 873            )
 874        self.meta.update({k: v for k, v in kwargs.items() if k in POSITION_META_KEYS})
 875        return self
 876
 877    def as_(
 878        self,
 879        alias: str | Identifier,
 880        quoted: t.Optional[bool] = None,
 881        dialect: DialectType = None,
 882        copy: bool = True,
 883        **opts,
 884    ) -> Alias:
 885        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 886
 887    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 888        this = self.copy()
 889        other = convert(other, copy=True)
 890        if not isinstance(this, klass) and not isinstance(other, klass):
 891            this = _wrap(this, Binary)
 892            other = _wrap(other, Binary)
 893        if reverse:
 894            return klass(this=other, expression=this)
 895        return klass(this=this, expression=other)
 896
 897    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
 898        return Bracket(
 899            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 900        )
 901
 902    def __iter__(self) -> t.Iterator:
 903        if "expressions" in self.arg_types:
 904            return iter(self.args.get("expressions") or [])
 905        # We define this because __getitem__ converts Expression into an iterable, which is
 906        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
 907        # See: https://peps.python.org/pep-0234/
 908        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
 909
 910    def isin(
 911        self,
 912        *expressions: t.Any,
 913        query: t.Optional[ExpOrStr] = None,
 914        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
 915        copy: bool = True,
 916        **opts,
 917    ) -> In:
 918        subquery = maybe_parse(query, copy=copy, **opts) if query else None
 919        if subquery and not isinstance(subquery, Subquery):
 920            subquery = subquery.subquery(copy=False)
 921
 922        return In(
 923            this=maybe_copy(self, copy),
 924            expressions=[convert(e, copy=copy) for e in expressions],
 925            query=subquery,
 926            unnest=(
 927                Unnest(
 928                    expressions=[
 929                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
 930                        for e in ensure_list(unnest)
 931                    ]
 932                )
 933                if unnest
 934                else None
 935            ),
 936        )
 937
 938    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 939        return Between(
 940            this=maybe_copy(self, copy),
 941            low=convert(low, copy=copy, **opts),
 942            high=convert(high, copy=copy, **opts),
 943        )
 944
 945    def is_(self, other: ExpOrStr) -> Is:
 946        return self._binop(Is, other)
 947
 948    def like(self, other: ExpOrStr) -> Like:
 949        return self._binop(Like, other)
 950
 951    def ilike(self, other: ExpOrStr) -> ILike:
 952        return self._binop(ILike, other)
 953
 954    def eq(self, other: t.Any) -> EQ:
 955        return self._binop(EQ, other)
 956
 957    def neq(self, other: t.Any) -> NEQ:
 958        return self._binop(NEQ, other)
 959
 960    def rlike(self, other: ExpOrStr) -> RegexpLike:
 961        return self._binop(RegexpLike, other)
 962
 963    def div(self, other: ExpOrStr, typed: bool = False, safe: bool = False) -> Div:
 964        div = self._binop(Div, other)
 965        div.args["typed"] = typed
 966        div.args["safe"] = safe
 967        return div
 968
 969    def asc(self, nulls_first: bool = True) -> Ordered:
 970        return Ordered(this=self.copy(), nulls_first=nulls_first)
 971
 972    def desc(self, nulls_first: bool = False) -> Ordered:
 973        return Ordered(this=self.copy(), desc=True, nulls_first=nulls_first)
 974
 975    def __lt__(self, other: t.Any) -> LT:
 976        return self._binop(LT, other)
 977
 978    def __le__(self, other: t.Any) -> LTE:
 979        return self._binop(LTE, other)
 980
 981    def __gt__(self, other: t.Any) -> GT:
 982        return self._binop(GT, other)
 983
 984    def __ge__(self, other: t.Any) -> GTE:
 985        return self._binop(GTE, other)
 986
 987    def __add__(self, other: t.Any) -> Add:
 988        return self._binop(Add, other)
 989
 990    def __radd__(self, other: t.Any) -> Add:
 991        return self._binop(Add, other, reverse=True)
 992
 993    def __sub__(self, other: t.Any) -> Sub:
 994        return self._binop(Sub, other)
 995
 996    def __rsub__(self, other: t.Any) -> Sub:
 997        return self._binop(Sub, other, reverse=True)
 998
 999    def __mul__(self, other: t.Any) -> Mul:
1000        return self._binop(Mul, other)
1001
1002    def __rmul__(self, other: t.Any) -> Mul:
1003        return self._binop(Mul, other, reverse=True)
1004
1005    def __truediv__(self, other: t.Any) -> Div:
1006        return self._binop(Div, other)
1007
1008    def __rtruediv__(self, other: t.Any) -> Div:
1009        return self._binop(Div, other, reverse=True)
1010
1011    def __floordiv__(self, other: t.Any) -> IntDiv:
1012        return self._binop(IntDiv, other)
1013
1014    def __rfloordiv__(self, other: t.Any) -> IntDiv:
1015        return self._binop(IntDiv, other, reverse=True)
1016
1017    def __mod__(self, other: t.Any) -> Mod:
1018        return self._binop(Mod, other)
1019
1020    def __rmod__(self, other: t.Any) -> Mod:
1021        return self._binop(Mod, other, reverse=True)
1022
1023    def __pow__(self, other: t.Any) -> Pow:
1024        return self._binop(Pow, other)
1025
1026    def __rpow__(self, other: t.Any) -> Pow:
1027        return self._binop(Pow, other, reverse=True)
1028
1029    def __and__(self, other: t.Any) -> And:
1030        return self._binop(And, other)
1031
1032    def __rand__(self, other: t.Any) -> And:
1033        return self._binop(And, other, reverse=True)
1034
1035    def __or__(self, other: t.Any) -> Or:
1036        return self._binop(Or, other)
1037
1038    def __ror__(self, other: t.Any) -> Or:
1039        return self._binop(Or, other, reverse=True)
1040
1041    def __neg__(self) -> Neg:
1042        return Neg(this=_wrap(self.copy(), Binary))
1043
1044    def __invert__(self) -> Not:
1045        return not_(self.copy())
1046
1047
1048IntoType = t.Union[
1049    str,
1050    t.Type[Expression],
1051    t.Collection[t.Union[str, t.Type[Expression]]],
1052]
1053ExpOrStr = t.Union[str, Expression]
1054
1055
1056class Condition(Expression):
1057    """Logical conditions like x AND y, or simply x"""
1058
1059
1060class Predicate(Condition):
1061    """Relationships like x = y, x > 1, x >= y."""
1062
1063
1064class DerivedTable(Expression):
1065    @property
1066    def selects(self) -> t.List[Expression]:
1067        return self.this.selects if isinstance(self.this, Query) else []
1068
1069    @property
1070    def named_selects(self) -> t.List[str]:
1071        return [select.output_name for select in self.selects]
1072
1073
1074class Query(Expression):
1075    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
1076        """
1077        Returns a `Subquery` that wraps around this query.
1078
1079        Example:
1080            >>> subquery = Select().select("x").from_("tbl").subquery()
1081            >>> Select().select("x").from_(subquery).sql()
1082            'SELECT x FROM (SELECT x FROM tbl)'
1083
1084        Args:
1085            alias: an optional alias for the subquery.
1086            copy: if `False`, modify this expression instance in-place.
1087        """
1088        instance = maybe_copy(self, copy)
1089        if not isinstance(alias, Expression):
1090            alias = TableAlias(this=to_identifier(alias)) if alias else None
1091
1092        return Subquery(this=instance, alias=alias)
1093
1094    def limit(
1095        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1096    ) -> Q:
1097        """
1098        Adds a LIMIT clause to this query.
1099
1100        Example:
1101            >>> select("1").union(select("1")).limit(1).sql()
1102            'SELECT 1 UNION SELECT 1 LIMIT 1'
1103
1104        Args:
1105            expression: the SQL code string to parse.
1106                This can also be an integer.
1107                If a `Limit` instance is passed, it will be used as-is.
1108                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
1109            dialect: the dialect used to parse the input expression.
1110            copy: if `False`, modify this expression instance in-place.
1111            opts: other options to use to parse the input expressions.
1112
1113        Returns:
1114            A limited Select expression.
1115        """
1116        return _apply_builder(
1117            expression=expression,
1118            instance=self,
1119            arg="limit",
1120            into=Limit,
1121            prefix="LIMIT",
1122            dialect=dialect,
1123            copy=copy,
1124            into_arg="expression",
1125            **opts,
1126        )
1127
1128    def offset(
1129        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1130    ) -> Q:
1131        """
1132        Set the OFFSET expression.
1133
1134        Example:
1135            >>> Select().from_("tbl").select("x").offset(10).sql()
1136            'SELECT x FROM tbl OFFSET 10'
1137
1138        Args:
1139            expression: the SQL code string to parse.
1140                This can also be an integer.
1141                If a `Offset` instance is passed, this is used as-is.
1142                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
1143            dialect: the dialect used to parse the input expression.
1144            copy: if `False`, modify this expression instance in-place.
1145            opts: other options to use to parse the input expressions.
1146
1147        Returns:
1148            The modified Select expression.
1149        """
1150        return _apply_builder(
1151            expression=expression,
1152            instance=self,
1153            arg="offset",
1154            into=Offset,
1155            prefix="OFFSET",
1156            dialect=dialect,
1157            copy=copy,
1158            into_arg="expression",
1159            **opts,
1160        )
1161
1162    def order_by(
1163        self: Q,
1164        *expressions: t.Optional[ExpOrStr],
1165        append: bool = True,
1166        dialect: DialectType = None,
1167        copy: bool = True,
1168        **opts,
1169    ) -> Q:
1170        """
1171        Set the ORDER BY expression.
1172
1173        Example:
1174            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
1175            'SELECT x FROM tbl ORDER BY x DESC'
1176
1177        Args:
1178            *expressions: the SQL code strings to parse.
1179                If a `Group` instance is passed, this is used as-is.
1180                If another `Expression` instance is passed, it will be wrapped in a `Order`.
1181            append: if `True`, add to any existing expressions.
1182                Otherwise, this flattens all the `Order` expression into a single expression.
1183            dialect: the dialect used to parse the input expression.
1184            copy: if `False`, modify this expression instance in-place.
1185            opts: other options to use to parse the input expressions.
1186
1187        Returns:
1188            The modified Select expression.
1189        """
1190        return _apply_child_list_builder(
1191            *expressions,
1192            instance=self,
1193            arg="order",
1194            append=append,
1195            copy=copy,
1196            prefix="ORDER BY",
1197            into=Order,
1198            dialect=dialect,
1199            **opts,
1200        )
1201
1202    @property
1203    def ctes(self) -> t.List[CTE]:
1204        """Returns a list of all the CTEs attached to this query."""
1205        with_ = self.args.get("with")
1206        return with_.expressions if with_ else []
1207
1208    @property
1209    def selects(self) -> t.List[Expression]:
1210        """Returns the query's projections."""
1211        raise NotImplementedError("Query objects must implement `selects`")
1212
1213    @property
1214    def named_selects(self) -> t.List[str]:
1215        """Returns the output names of the query's projections."""
1216        raise NotImplementedError("Query objects must implement `named_selects`")
1217
1218    def select(
1219        self: Q,
1220        *expressions: t.Optional[ExpOrStr],
1221        append: bool = True,
1222        dialect: DialectType = None,
1223        copy: bool = True,
1224        **opts,
1225    ) -> Q:
1226        """
1227        Append to or set the SELECT expressions.
1228
1229        Example:
1230            >>> Select().select("x", "y").sql()
1231            'SELECT x, y'
1232
1233        Args:
1234            *expressions: the SQL code strings to parse.
1235                If an `Expression` instance is passed, it will be used as-is.
1236            append: if `True`, add to any existing expressions.
1237                Otherwise, this resets the expressions.
1238            dialect: the dialect used to parse the input expressions.
1239            copy: if `False`, modify this expression instance in-place.
1240            opts: other options to use to parse the input expressions.
1241
1242        Returns:
1243            The modified Query expression.
1244        """
1245        raise NotImplementedError("Query objects must implement `select`")
1246
1247    def where(
1248        self: Q,
1249        *expressions: t.Optional[ExpOrStr],
1250        append: bool = True,
1251        dialect: DialectType = None,
1252        copy: bool = True,
1253        **opts,
1254    ) -> Q:
1255        """
1256        Append to or set the WHERE expressions.
1257
1258        Examples:
1259            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
1260            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
1261
1262        Args:
1263            *expressions: the SQL code strings to parse.
1264                If an `Expression` instance is passed, it will be used as-is.
1265                Multiple expressions are combined with an AND operator.
1266            append: if `True`, AND the new expressions to any existing expression.
1267                Otherwise, this resets the expression.
1268            dialect: the dialect used to parse the input expressions.
1269            copy: if `False`, modify this expression instance in-place.
1270            opts: other options to use to parse the input expressions.
1271
1272        Returns:
1273            The modified expression.
1274        """
1275        return _apply_conjunction_builder(
1276            *[expr.this if isinstance(expr, Where) else expr for expr in expressions],
1277            instance=self,
1278            arg="where",
1279            append=append,
1280            into=Where,
1281            dialect=dialect,
1282            copy=copy,
1283            **opts,
1284        )
1285
1286    def with_(
1287        self: Q,
1288        alias: ExpOrStr,
1289        as_: ExpOrStr,
1290        recursive: t.Optional[bool] = None,
1291        materialized: t.Optional[bool] = None,
1292        append: bool = True,
1293        dialect: DialectType = None,
1294        copy: bool = True,
1295        scalar: bool = False,
1296        **opts,
1297    ) -> Q:
1298        """
1299        Append to or set the common table expressions.
1300
1301        Example:
1302            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
1303            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
1304
1305        Args:
1306            alias: the SQL code string to parse as the table name.
1307                If an `Expression` instance is passed, this is used as-is.
1308            as_: the SQL code string to parse as the table expression.
1309                If an `Expression` instance is passed, it will be used as-is.
1310            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1311            materialized: set the MATERIALIZED part of the expression.
1312            append: if `True`, add to any existing expressions.
1313                Otherwise, this resets the expressions.
1314            dialect: the dialect used to parse the input expression.
1315            copy: if `False`, modify this expression instance in-place.
1316            scalar: if `True`, this is a scalar common table expression.
1317            opts: other options to use to parse the input expressions.
1318
1319        Returns:
1320            The modified expression.
1321        """
1322        return _apply_cte_builder(
1323            self,
1324            alias,
1325            as_,
1326            recursive=recursive,
1327            materialized=materialized,
1328            append=append,
1329            dialect=dialect,
1330            copy=copy,
1331            scalar=scalar,
1332            **opts,
1333        )
1334
1335    def union(
1336        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1337    ) -> Union:
1338        """
1339        Builds a UNION expression.
1340
1341        Example:
1342            >>> import sqlglot
1343            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
1344            'SELECT * FROM foo UNION SELECT * FROM bla'
1345
1346        Args:
1347            expressions: the SQL code strings.
1348                If `Expression` instances are passed, they will be used as-is.
1349            distinct: set the DISTINCT flag if and only if this is true.
1350            dialect: the dialect used to parse the input expression.
1351            opts: other options to use to parse the input expressions.
1352
1353        Returns:
1354            The new Union expression.
1355        """
1356        return union(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1357
1358    def intersect(
1359        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1360    ) -> Intersect:
1361        """
1362        Builds an INTERSECT expression.
1363
1364        Example:
1365            >>> import sqlglot
1366            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
1367            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
1368
1369        Args:
1370            expressions: the SQL code strings.
1371                If `Expression` instances are passed, they will be used as-is.
1372            distinct: set the DISTINCT flag if and only if this is true.
1373            dialect: the dialect used to parse the input expression.
1374            opts: other options to use to parse the input expressions.
1375
1376        Returns:
1377            The new Intersect expression.
1378        """
1379        return intersect(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1380
1381    def except_(
1382        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1383    ) -> Except:
1384        """
1385        Builds an EXCEPT expression.
1386
1387        Example:
1388            >>> import sqlglot
1389            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
1390            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
1391
1392        Args:
1393            expressions: the SQL code strings.
1394                If `Expression` instance are passed, they will be used as-is.
1395            distinct: set the DISTINCT flag if and only if this is true.
1396            dialect: the dialect used to parse the input expression.
1397            opts: other options to use to parse the input expressions.
1398
1399        Returns:
1400            The new Except expression.
1401        """
1402        return except_(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1403
1404
1405class UDTF(DerivedTable):
1406    @property
1407    def selects(self) -> t.List[Expression]:
1408        alias = self.args.get("alias")
1409        return alias.columns if alias else []
1410
1411
1412class Cache(Expression):
1413    arg_types = {
1414        "this": True,
1415        "lazy": False,
1416        "options": False,
1417        "expression": False,
1418    }
1419
1420
1421class Uncache(Expression):
1422    arg_types = {"this": True, "exists": False}
1423
1424
1425class Refresh(Expression):
1426    pass
1427
1428
1429class DDL(Expression):
1430    @property
1431    def ctes(self) -> t.List[CTE]:
1432        """Returns a list of all the CTEs attached to this statement."""
1433        with_ = self.args.get("with")
1434        return with_.expressions if with_ else []
1435
1436    @property
1437    def selects(self) -> t.List[Expression]:
1438        """If this statement contains a query (e.g. a CTAS), this returns the query's projections."""
1439        return self.expression.selects if isinstance(self.expression, Query) else []
1440
1441    @property
1442    def named_selects(self) -> t.List[str]:
1443        """
1444        If this statement contains a query (e.g. a CTAS), this returns the output
1445        names of the query's projections.
1446        """
1447        return self.expression.named_selects if isinstance(self.expression, Query) else []
1448
1449
1450class DML(Expression):
1451    def returning(
1452        self,
1453        expression: ExpOrStr,
1454        dialect: DialectType = None,
1455        copy: bool = True,
1456        **opts,
1457    ) -> "Self":
1458        """
1459        Set the RETURNING expression. Not supported by all dialects.
1460
1461        Example:
1462            >>> delete("tbl").returning("*", dialect="postgres").sql()
1463            'DELETE FROM tbl RETURNING *'
1464
1465        Args:
1466            expression: the SQL code strings to parse.
1467                If an `Expression` instance is passed, it will be used as-is.
1468            dialect: the dialect used to parse the input expressions.
1469            copy: if `False`, modify this expression instance in-place.
1470            opts: other options to use to parse the input expressions.
1471
1472        Returns:
1473            Delete: the modified expression.
1474        """
1475        return _apply_builder(
1476            expression=expression,
1477            instance=self,
1478            arg="returning",
1479            prefix="RETURNING",
1480            dialect=dialect,
1481            copy=copy,
1482            into=Returning,
1483            **opts,
1484        )
1485
1486
1487class Create(DDL):
1488    arg_types = {
1489        "with": False,
1490        "this": True,
1491        "kind": True,
1492        "expression": False,
1493        "exists": False,
1494        "properties": False,
1495        "replace": False,
1496        "refresh": False,
1497        "unique": False,
1498        "indexes": False,
1499        "no_schema_binding": False,
1500        "begin": False,
1501        "end": False,
1502        "clone": False,
1503        "concurrently": False,
1504        "clustered": False,
1505    }
1506
1507    @property
1508    def kind(self) -> t.Optional[str]:
1509        kind = self.args.get("kind")
1510        return kind and kind.upper()
1511
1512
1513class SequenceProperties(Expression):
1514    arg_types = {
1515        "increment": False,
1516        "minvalue": False,
1517        "maxvalue": False,
1518        "cache": False,
1519        "start": False,
1520        "owned": False,
1521        "options": False,
1522    }
1523
1524
1525class TruncateTable(Expression):
1526    arg_types = {
1527        "expressions": True,
1528        "is_database": False,
1529        "exists": False,
1530        "only": False,
1531        "cluster": False,
1532        "identity": False,
1533        "option": False,
1534        "partition": False,
1535    }
1536
1537
1538# https://docs.snowflake.com/en/sql-reference/sql/create-clone
1539# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_clone_statement
1540# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_copy
1541class Clone(Expression):
1542    arg_types = {"this": True, "shallow": False, "copy": False}
1543
1544
1545class Describe(Expression):
1546    arg_types = {
1547        "this": True,
1548        "style": False,
1549        "kind": False,
1550        "expressions": False,
1551        "partition": False,
1552        "format": False,
1553    }
1554
1555
1556# https://duckdb.org/docs/sql/statements/attach.html#attach
1557class Attach(Expression):
1558    arg_types = {"this": True, "exists": False, "expressions": False}
1559
1560
1561# https://duckdb.org/docs/sql/statements/attach.html#detach
1562class Detach(Expression):
1563    arg_types = {"this": True, "exists": False}
1564
1565
1566# https://duckdb.org/docs/guides/meta/summarize.html
1567class Summarize(Expression):
1568    arg_types = {"this": True, "table": False}
1569
1570
1571class Kill(Expression):
1572    arg_types = {"this": True, "kind": False}
1573
1574
1575class Pragma(Expression):
1576    pass
1577
1578
1579class Declare(Expression):
1580    arg_types = {"expressions": True}
1581
1582
1583class DeclareItem(Expression):
1584    arg_types = {"this": True, "kind": True, "default": False}
1585
1586
1587class Set(Expression):
1588    arg_types = {"expressions": False, "unset": False, "tag": False}
1589
1590
1591class Heredoc(Expression):
1592    arg_types = {"this": True, "tag": False}
1593
1594
1595class SetItem(Expression):
1596    arg_types = {
1597        "this": False,
1598        "expressions": False,
1599        "kind": False,
1600        "collate": False,  # MySQL SET NAMES statement
1601        "global": False,
1602    }
1603
1604
1605class Show(Expression):
1606    arg_types = {
1607        "this": True,
1608        "history": False,
1609        "terse": False,
1610        "target": False,
1611        "offset": False,
1612        "starts_with": False,
1613        "limit": False,
1614        "from": False,
1615        "like": False,
1616        "where": False,
1617        "db": False,
1618        "scope": False,
1619        "scope_kind": False,
1620        "full": False,
1621        "mutex": False,
1622        "query": False,
1623        "channel": False,
1624        "global": False,
1625        "log": False,
1626        "position": False,
1627        "types": False,
1628        "privileges": False,
1629    }
1630
1631
1632class UserDefinedFunction(Expression):
1633    arg_types = {"this": True, "expressions": False, "wrapped": False}
1634
1635
1636class CharacterSet(Expression):
1637    arg_types = {"this": True, "default": False}
1638
1639
1640class RecursiveWithSearch(Expression):
1641    arg_types = {"kind": True, "this": True, "expression": True, "using": False}
1642
1643
1644class With(Expression):
1645    arg_types = {"expressions": True, "recursive": False, "search": False}
1646
1647    @property
1648    def recursive(self) -> bool:
1649        return bool(self.args.get("recursive"))
1650
1651
1652class WithinGroup(Expression):
1653    arg_types = {"this": True, "expression": False}
1654
1655
1656# clickhouse supports scalar ctes
1657# https://clickhouse.com/docs/en/sql-reference/statements/select/with
1658class CTE(DerivedTable):
1659    arg_types = {
1660        "this": True,
1661        "alias": True,
1662        "scalar": False,
1663        "materialized": False,
1664    }
1665
1666
1667class ProjectionDef(Expression):
1668    arg_types = {"this": True, "expression": True}
1669
1670
1671class TableAlias(Expression):
1672    arg_types = {"this": False, "columns": False}
1673
1674    @property
1675    def columns(self):
1676        return self.args.get("columns") or []
1677
1678
1679class BitString(Condition):
1680    pass
1681
1682
1683class HexString(Condition):
1684    arg_types = {"this": True, "is_integer": False}
1685
1686
1687class ByteString(Condition):
1688    pass
1689
1690
1691class RawString(Condition):
1692    pass
1693
1694
1695class UnicodeString(Condition):
1696    arg_types = {"this": True, "escape": False}
1697
1698
1699class Column(Condition):
1700    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1701
1702    @property
1703    def table(self) -> str:
1704        return self.text("table")
1705
1706    @property
1707    def db(self) -> str:
1708        return self.text("db")
1709
1710    @property
1711    def catalog(self) -> str:
1712        return self.text("catalog")
1713
1714    @property
1715    def output_name(self) -> str:
1716        return self.name
1717
1718    @property
1719    def parts(self) -> t.List[Identifier]:
1720        """Return the parts of a column in order catalog, db, table, name."""
1721        return [
1722            t.cast(Identifier, self.args[part])
1723            for part in ("catalog", "db", "table", "this")
1724            if self.args.get(part)
1725        ]
1726
1727    def to_dot(self, include_dots: bool = True) -> Dot | Identifier:
1728        """Converts the column into a dot expression."""
1729        parts = self.parts
1730        parent = self.parent
1731
1732        if include_dots:
1733            while isinstance(parent, Dot):
1734                parts.append(parent.expression)
1735                parent = parent.parent
1736
1737        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
1738
1739
1740class ColumnPosition(Expression):
1741    arg_types = {"this": False, "position": True}
1742
1743
1744class ColumnDef(Expression):
1745    arg_types = {
1746        "this": True,
1747        "kind": False,
1748        "constraints": False,
1749        "exists": False,
1750        "position": False,
1751        "default": False,
1752        "output": False,
1753    }
1754
1755    @property
1756    def constraints(self) -> t.List[ColumnConstraint]:
1757        return self.args.get("constraints") or []
1758
1759    @property
1760    def kind(self) -> t.Optional[DataType]:
1761        return self.args.get("kind")
1762
1763
1764class AlterColumn(Expression):
1765    arg_types = {
1766        "this": True,
1767        "dtype": False,
1768        "collate": False,
1769        "using": False,
1770        "default": False,
1771        "drop": False,
1772        "comment": False,
1773        "allow_null": False,
1774        "visible": False,
1775    }
1776
1777
1778# https://dev.mysql.com/doc/refman/8.0/en/invisible-indexes.html
1779class AlterIndex(Expression):
1780    arg_types = {"this": True, "visible": True}
1781
1782
1783# https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
1784class AlterDistStyle(Expression):
1785    pass
1786
1787
1788class AlterSortKey(Expression):
1789    arg_types = {"this": False, "expressions": False, "compound": False}
1790
1791
1792class AlterSet(Expression):
1793    arg_types = {
1794        "expressions": False,
1795        "option": False,
1796        "tablespace": False,
1797        "access_method": False,
1798        "file_format": False,
1799        "copy_options": False,
1800        "tag": False,
1801        "location": False,
1802        "serde": False,
1803    }
1804
1805
1806class RenameColumn(Expression):
1807    arg_types = {"this": True, "to": True, "exists": False}
1808
1809
1810class AlterRename(Expression):
1811    pass
1812
1813
1814class SwapTable(Expression):
1815    pass
1816
1817
1818class Comment(Expression):
1819    arg_types = {
1820        "this": True,
1821        "kind": True,
1822        "expression": True,
1823        "exists": False,
1824        "materialized": False,
1825    }
1826
1827
1828class Comprehension(Expression):
1829    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
1830
1831
1832# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1833class MergeTreeTTLAction(Expression):
1834    arg_types = {
1835        "this": True,
1836        "delete": False,
1837        "recompress": False,
1838        "to_disk": False,
1839        "to_volume": False,
1840    }
1841
1842
1843# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1844class MergeTreeTTL(Expression):
1845    arg_types = {
1846        "expressions": True,
1847        "where": False,
1848        "group": False,
1849        "aggregates": False,
1850    }
1851
1852
1853# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1854class IndexConstraintOption(Expression):
1855    arg_types = {
1856        "key_block_size": False,
1857        "using": False,
1858        "parser": False,
1859        "comment": False,
1860        "visible": False,
1861        "engine_attr": False,
1862        "secondary_engine_attr": False,
1863    }
1864
1865
1866class ColumnConstraint(Expression):
1867    arg_types = {"this": False, "kind": True}
1868
1869    @property
1870    def kind(self) -> ColumnConstraintKind:
1871        return self.args["kind"]
1872
1873
1874class ColumnConstraintKind(Expression):
1875    pass
1876
1877
1878class AutoIncrementColumnConstraint(ColumnConstraintKind):
1879    pass
1880
1881
1882class PeriodForSystemTimeConstraint(ColumnConstraintKind):
1883    arg_types = {"this": True, "expression": True}
1884
1885
1886class CaseSpecificColumnConstraint(ColumnConstraintKind):
1887    arg_types = {"not_": True}
1888
1889
1890class CharacterSetColumnConstraint(ColumnConstraintKind):
1891    arg_types = {"this": True}
1892
1893
1894class CheckColumnConstraint(ColumnConstraintKind):
1895    arg_types = {"this": True, "enforced": False}
1896
1897
1898class ClusteredColumnConstraint(ColumnConstraintKind):
1899    pass
1900
1901
1902class CollateColumnConstraint(ColumnConstraintKind):
1903    pass
1904
1905
1906class CommentColumnConstraint(ColumnConstraintKind):
1907    pass
1908
1909
1910class CompressColumnConstraint(ColumnConstraintKind):
1911    arg_types = {"this": False}
1912
1913
1914class DateFormatColumnConstraint(ColumnConstraintKind):
1915    arg_types = {"this": True}
1916
1917
1918class DefaultColumnConstraint(ColumnConstraintKind):
1919    pass
1920
1921
1922class EncodeColumnConstraint(ColumnConstraintKind):
1923    pass
1924
1925
1926# https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-EXCLUDE
1927class ExcludeColumnConstraint(ColumnConstraintKind):
1928    pass
1929
1930
1931class EphemeralColumnConstraint(ColumnConstraintKind):
1932    arg_types = {"this": False}
1933
1934
1935class WithOperator(Expression):
1936    arg_types = {"this": True, "op": True}
1937
1938
1939class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1940    # this: True -> ALWAYS, this: False -> BY DEFAULT
1941    arg_types = {
1942        "this": False,
1943        "expression": False,
1944        "on_null": False,
1945        "start": False,
1946        "increment": False,
1947        "minvalue": False,
1948        "maxvalue": False,
1949        "cycle": False,
1950        "order": False,
1951    }
1952
1953
1954class GeneratedAsRowColumnConstraint(ColumnConstraintKind):
1955    arg_types = {"start": False, "hidden": False}
1956
1957
1958# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1959# https://github.com/ClickHouse/ClickHouse/blob/master/src/Parsers/ParserCreateQuery.h#L646
1960class IndexColumnConstraint(ColumnConstraintKind):
1961    arg_types = {
1962        "this": False,
1963        "expressions": False,
1964        "kind": False,
1965        "index_type": False,
1966        "options": False,
1967        "expression": False,  # Clickhouse
1968        "granularity": False,
1969    }
1970
1971
1972class InlineLengthColumnConstraint(ColumnConstraintKind):
1973    pass
1974
1975
1976class NonClusteredColumnConstraint(ColumnConstraintKind):
1977    pass
1978
1979
1980class NotForReplicationColumnConstraint(ColumnConstraintKind):
1981    arg_types = {}
1982
1983
1984# https://docs.snowflake.com/en/sql-reference/sql/create-table
1985class MaskingPolicyColumnConstraint(ColumnConstraintKind):
1986    arg_types = {"this": True, "expressions": False}
1987
1988
1989class NotNullColumnConstraint(ColumnConstraintKind):
1990    arg_types = {"allow_null": False}
1991
1992
1993# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1994class OnUpdateColumnConstraint(ColumnConstraintKind):
1995    pass
1996
1997
1998class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1999    arg_types = {"desc": False, "options": False}
2000
2001
2002class TitleColumnConstraint(ColumnConstraintKind):
2003    pass
2004
2005
2006class UniqueColumnConstraint(ColumnConstraintKind):
2007    arg_types = {
2008        "this": False,
2009        "index_type": False,
2010        "on_conflict": False,
2011        "nulls": False,
2012        "options": False,
2013    }
2014
2015
2016class UppercaseColumnConstraint(ColumnConstraintKind):
2017    arg_types: t.Dict[str, t.Any] = {}
2018
2019
2020# https://docs.risingwave.com/processing/watermarks#syntax
2021class WatermarkColumnConstraint(Expression):
2022    arg_types = {"this": True, "expression": True}
2023
2024
2025class PathColumnConstraint(ColumnConstraintKind):
2026    pass
2027
2028
2029# https://docs.snowflake.com/en/sql-reference/sql/create-table
2030class ProjectionPolicyColumnConstraint(ColumnConstraintKind):
2031    pass
2032
2033
2034# computed column expression
2035# https://learn.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver16
2036class ComputedColumnConstraint(ColumnConstraintKind):
2037    arg_types = {"this": True, "persisted": False, "not_null": False}
2038
2039
2040class Constraint(Expression):
2041    arg_types = {"this": True, "expressions": True}
2042
2043
2044class Delete(DML):
2045    arg_types = {
2046        "with": False,
2047        "this": False,
2048        "using": False,
2049        "where": False,
2050        "returning": False,
2051        "limit": False,
2052        "tables": False,  # Multiple-Table Syntax (MySQL)
2053        "cluster": False,  # Clickhouse
2054    }
2055
2056    def delete(
2057        self,
2058        table: ExpOrStr,
2059        dialect: DialectType = None,
2060        copy: bool = True,
2061        **opts,
2062    ) -> Delete:
2063        """
2064        Create a DELETE expression or replace the table on an existing DELETE expression.
2065
2066        Example:
2067            >>> delete("tbl").sql()
2068            'DELETE FROM tbl'
2069
2070        Args:
2071            table: the table from which to delete.
2072            dialect: the dialect used to parse the input expression.
2073            copy: if `False`, modify this expression instance in-place.
2074            opts: other options to use to parse the input expressions.
2075
2076        Returns:
2077            Delete: the modified expression.
2078        """
2079        return _apply_builder(
2080            expression=table,
2081            instance=self,
2082            arg="this",
2083            dialect=dialect,
2084            into=Table,
2085            copy=copy,
2086            **opts,
2087        )
2088
2089    def where(
2090        self,
2091        *expressions: t.Optional[ExpOrStr],
2092        append: bool = True,
2093        dialect: DialectType = None,
2094        copy: bool = True,
2095        **opts,
2096    ) -> Delete:
2097        """
2098        Append to or set the WHERE expressions.
2099
2100        Example:
2101            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
2102            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
2103
2104        Args:
2105            *expressions: the SQL code strings to parse.
2106                If an `Expression` instance is passed, it will be used as-is.
2107                Multiple expressions are combined with an AND operator.
2108            append: if `True`, AND the new expressions to any existing expression.
2109                Otherwise, this resets the expression.
2110            dialect: the dialect used to parse the input expressions.
2111            copy: if `False`, modify this expression instance in-place.
2112            opts: other options to use to parse the input expressions.
2113
2114        Returns:
2115            Delete: the modified expression.
2116        """
2117        return _apply_conjunction_builder(
2118            *expressions,
2119            instance=self,
2120            arg="where",
2121            append=append,
2122            into=Where,
2123            dialect=dialect,
2124            copy=copy,
2125            **opts,
2126        )
2127
2128
2129class Drop(Expression):
2130    arg_types = {
2131        "this": False,
2132        "kind": False,
2133        "expressions": False,
2134        "exists": False,
2135        "temporary": False,
2136        "materialized": False,
2137        "cascade": False,
2138        "constraints": False,
2139        "purge": False,
2140        "cluster": False,
2141        "concurrently": False,
2142    }
2143
2144    @property
2145    def kind(self) -> t.Optional[str]:
2146        kind = self.args.get("kind")
2147        return kind and kind.upper()
2148
2149
2150# https://cloud.google.com/bigquery/docs/reference/standard-sql/export-statements
2151class Export(Expression):
2152    arg_types = {"this": True, "connection": False, "options": True}
2153
2154
2155class Filter(Expression):
2156    arg_types = {"this": True, "expression": True}
2157
2158
2159class Check(Expression):
2160    pass
2161
2162
2163class Changes(Expression):
2164    arg_types = {"information": True, "at_before": False, "end": False}
2165
2166
2167# https://docs.snowflake.com/en/sql-reference/constructs/connect-by
2168class Connect(Expression):
2169    arg_types = {"start": False, "connect": True, "nocycle": False}
2170
2171
2172class CopyParameter(Expression):
2173    arg_types = {"this": True, "expression": False, "expressions": False}
2174
2175
2176class Copy(DML):
2177    arg_types = {
2178        "this": True,
2179        "kind": True,
2180        "files": True,
2181        "credentials": False,
2182        "format": False,
2183        "params": False,
2184    }
2185
2186
2187class Credentials(Expression):
2188    arg_types = {
2189        "credentials": False,
2190        "encryption": False,
2191        "storage": False,
2192        "iam_role": False,
2193        "region": False,
2194    }
2195
2196
2197class Prior(Expression):
2198    pass
2199
2200
2201class Directory(Expression):
2202    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
2203    arg_types = {"this": True, "local": False, "row_format": False}
2204
2205
2206class ForeignKey(Expression):
2207    arg_types = {
2208        "expressions": False,
2209        "reference": False,
2210        "delete": False,
2211        "update": False,
2212        "options": False,
2213    }
2214
2215
2216class ColumnPrefix(Expression):
2217    arg_types = {"this": True, "expression": True}
2218
2219
2220class PrimaryKey(Expression):
2221    arg_types = {"expressions": True, "options": False}
2222
2223
2224# https://www.postgresql.org/docs/9.1/sql-selectinto.html
2225# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
2226class Into(Expression):
2227    arg_types = {
2228        "this": False,
2229        "temporary": False,
2230        "unlogged": False,
2231        "bulk_collect": False,
2232        "expressions": False,
2233    }
2234
2235
2236class From(Expression):
2237    @property
2238    def name(self) -> str:
2239        return self.this.name
2240
2241    @property
2242    def alias_or_name(self) -> str:
2243        return self.this.alias_or_name
2244
2245
2246class Having(Expression):
2247    pass
2248
2249
2250class Hint(Expression):
2251    arg_types = {"expressions": True}
2252
2253
2254class JoinHint(Expression):
2255    arg_types = {"this": True, "expressions": True}
2256
2257
2258class Identifier(Expression):
2259    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
2260
2261    @property
2262    def quoted(self) -> bool:
2263        return bool(self.args.get("quoted"))
2264
2265    @property
2266    def hashable_args(self) -> t.Any:
2267        return (self.this, self.quoted)
2268
2269    @property
2270    def output_name(self) -> str:
2271        return self.name
2272
2273
2274# https://www.postgresql.org/docs/current/indexes-opclass.html
2275class Opclass(Expression):
2276    arg_types = {"this": True, "expression": True}
2277
2278
2279class Index(Expression):
2280    arg_types = {
2281        "this": False,
2282        "table": False,
2283        "unique": False,
2284        "primary": False,
2285        "amp": False,  # teradata
2286        "params": False,
2287    }
2288
2289
2290class IndexParameters(Expression):
2291    arg_types = {
2292        "using": False,
2293        "include": False,
2294        "columns": False,
2295        "with_storage": False,
2296        "partition_by": False,
2297        "tablespace": False,
2298        "where": False,
2299        "on": False,
2300    }
2301
2302
2303class Insert(DDL, DML):
2304    arg_types = {
2305        "hint": False,
2306        "with": False,
2307        "is_function": False,
2308        "this": False,
2309        "expression": False,
2310        "conflict": False,
2311        "returning": False,
2312        "overwrite": False,
2313        "exists": False,
2314        "alternative": False,
2315        "where": False,
2316        "ignore": False,
2317        "by_name": False,
2318        "stored": False,
2319        "partition": False,
2320        "settings": False,
2321        "source": False,
2322    }
2323
2324    def with_(
2325        self,
2326        alias: ExpOrStr,
2327        as_: ExpOrStr,
2328        recursive: t.Optional[bool] = None,
2329        materialized: t.Optional[bool] = None,
2330        append: bool = True,
2331        dialect: DialectType = None,
2332        copy: bool = True,
2333        **opts,
2334    ) -> Insert:
2335        """
2336        Append to or set the common table expressions.
2337
2338        Example:
2339            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
2340            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
2341
2342        Args:
2343            alias: the SQL code string to parse as the table name.
2344                If an `Expression` instance is passed, this is used as-is.
2345            as_: the SQL code string to parse as the table expression.
2346                If an `Expression` instance is passed, it will be used as-is.
2347            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2348            materialized: set the MATERIALIZED part of the expression.
2349            append: if `True`, add to any existing expressions.
2350                Otherwise, this resets the expressions.
2351            dialect: the dialect used to parse the input expression.
2352            copy: if `False`, modify this expression instance in-place.
2353            opts: other options to use to parse the input expressions.
2354
2355        Returns:
2356            The modified expression.
2357        """
2358        return _apply_cte_builder(
2359            self,
2360            alias,
2361            as_,
2362            recursive=recursive,
2363            materialized=materialized,
2364            append=append,
2365            dialect=dialect,
2366            copy=copy,
2367            **opts,
2368        )
2369
2370
2371class ConditionalInsert(Expression):
2372    arg_types = {"this": True, "expression": False, "else_": False}
2373
2374
2375class MultitableInserts(Expression):
2376    arg_types = {"expressions": True, "kind": True, "source": True}
2377
2378
2379class OnConflict(Expression):
2380    arg_types = {
2381        "duplicate": False,
2382        "expressions": False,
2383        "action": False,
2384        "conflict_keys": False,
2385        "constraint": False,
2386        "where": False,
2387    }
2388
2389
2390class OnCondition(Expression):
2391    arg_types = {"error": False, "empty": False, "null": False}
2392
2393
2394class Returning(Expression):
2395    arg_types = {"expressions": True, "into": False}
2396
2397
2398# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
2399class Introducer(Expression):
2400    arg_types = {"this": True, "expression": True}
2401
2402
2403# national char, like n'utf8'
2404class National(Expression):
2405    pass
2406
2407
2408class LoadData(Expression):
2409    arg_types = {
2410        "this": True,
2411        "local": False,
2412        "overwrite": False,
2413        "inpath": True,
2414        "partition": False,
2415        "input_format": False,
2416        "serde": False,
2417    }
2418
2419
2420class Partition(Expression):
2421    arg_types = {"expressions": True, "subpartition": False}
2422
2423
2424class PartitionRange(Expression):
2425    arg_types = {"this": True, "expression": True}
2426
2427
2428# https://clickhouse.com/docs/en/sql-reference/statements/alter/partition#how-to-set-partition-expression
2429class PartitionId(Expression):
2430    pass
2431
2432
2433class Fetch(Expression):
2434    arg_types = {
2435        "direction": False,
2436        "count": False,
2437        "limit_options": False,
2438    }
2439
2440
2441class Grant(Expression):
2442    arg_types = {
2443        "privileges": True,
2444        "kind": False,
2445        "securable": True,
2446        "principals": True,
2447        "grant_option": False,
2448    }
2449
2450
2451class Group(Expression):
2452    arg_types = {
2453        "expressions": False,
2454        "grouping_sets": False,
2455        "cube": False,
2456        "rollup": False,
2457        "totals": False,
2458        "all": False,
2459    }
2460
2461
2462class Cube(Expression):
2463    arg_types = {"expressions": False}
2464
2465
2466class Rollup(Expression):
2467    arg_types = {"expressions": False}
2468
2469
2470class GroupingSets(Expression):
2471    arg_types = {"expressions": True}
2472
2473
2474class Lambda(Expression):
2475    arg_types = {"this": True, "expressions": True}
2476
2477
2478class Limit(Expression):
2479    arg_types = {
2480        "this": False,
2481        "expression": True,
2482        "offset": False,
2483        "limit_options": False,
2484        "expressions": False,
2485    }
2486
2487
2488class LimitOptions(Expression):
2489    arg_types = {
2490        "percent": False,
2491        "rows": False,
2492        "with_ties": False,
2493    }
2494
2495
2496class Literal(Condition):
2497    arg_types = {"this": True, "is_string": True}
2498
2499    @property
2500    def hashable_args(self) -> t.Any:
2501        return (self.this, self.args.get("is_string"))
2502
2503    @classmethod
2504    def number(cls, number) -> Literal:
2505        return cls(this=str(number), is_string=False)
2506
2507    @classmethod
2508    def string(cls, string) -> Literal:
2509        return cls(this=str(string), is_string=True)
2510
2511    @property
2512    def output_name(self) -> str:
2513        return self.name
2514
2515    def to_py(self) -> int | str | Decimal:
2516        if self.is_number:
2517            try:
2518                return int(self.this)
2519            except ValueError:
2520                return Decimal(self.this)
2521        return self.this
2522
2523
2524class Join(Expression):
2525    arg_types = {
2526        "this": True,
2527        "on": False,
2528        "side": False,
2529        "kind": False,
2530        "using": False,
2531        "method": False,
2532        "global": False,
2533        "hint": False,
2534        "match_condition": False,  # Snowflake
2535        "expressions": False,
2536        "pivots": False,
2537    }
2538
2539    @property
2540    def method(self) -> str:
2541        return self.text("method").upper()
2542
2543    @property
2544    def kind(self) -> str:
2545        return self.text("kind").upper()
2546
2547    @property
2548    def side(self) -> str:
2549        return self.text("side").upper()
2550
2551    @property
2552    def hint(self) -> str:
2553        return self.text("hint").upper()
2554
2555    @property
2556    def alias_or_name(self) -> str:
2557        return self.this.alias_or_name
2558
2559    @property
2560    def is_semi_or_anti_join(self) -> bool:
2561        return self.kind in ("SEMI", "ANTI")
2562
2563    def on(
2564        self,
2565        *expressions: t.Optional[ExpOrStr],
2566        append: bool = True,
2567        dialect: DialectType = None,
2568        copy: bool = True,
2569        **opts,
2570    ) -> Join:
2571        """
2572        Append to or set the ON expressions.
2573
2574        Example:
2575            >>> import sqlglot
2576            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
2577            'JOIN x ON y = 1'
2578
2579        Args:
2580            *expressions: the SQL code strings to parse.
2581                If an `Expression` instance is passed, it will be used as-is.
2582                Multiple expressions are combined with an AND operator.
2583            append: if `True`, AND the new expressions to any existing expression.
2584                Otherwise, this resets the expression.
2585            dialect: the dialect used to parse the input expressions.
2586            copy: if `False`, modify this expression instance in-place.
2587            opts: other options to use to parse the input expressions.
2588
2589        Returns:
2590            The modified Join expression.
2591        """
2592        join = _apply_conjunction_builder(
2593            *expressions,
2594            instance=self,
2595            arg="on",
2596            append=append,
2597            dialect=dialect,
2598            copy=copy,
2599            **opts,
2600        )
2601
2602        if join.kind == "CROSS":
2603            join.set("kind", None)
2604
2605        return join
2606
2607    def using(
2608        self,
2609        *expressions: t.Optional[ExpOrStr],
2610        append: bool = True,
2611        dialect: DialectType = None,
2612        copy: bool = True,
2613        **opts,
2614    ) -> Join:
2615        """
2616        Append to or set the USING expressions.
2617
2618        Example:
2619            >>> import sqlglot
2620            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
2621            'JOIN x USING (foo, bla)'
2622
2623        Args:
2624            *expressions: the SQL code strings to parse.
2625                If an `Expression` instance is passed, it will be used as-is.
2626            append: if `True`, concatenate the new expressions to the existing "using" list.
2627                Otherwise, this resets the expression.
2628            dialect: the dialect used to parse the input expressions.
2629            copy: if `False`, modify this expression instance in-place.
2630            opts: other options to use to parse the input expressions.
2631
2632        Returns:
2633            The modified Join expression.
2634        """
2635        join = _apply_list_builder(
2636            *expressions,
2637            instance=self,
2638            arg="using",
2639            append=append,
2640            dialect=dialect,
2641            copy=copy,
2642            **opts,
2643        )
2644
2645        if join.kind == "CROSS":
2646            join.set("kind", None)
2647
2648        return join
2649
2650
2651class Lateral(UDTF):
2652    arg_types = {
2653        "this": True,
2654        "view": False,
2655        "outer": False,
2656        "alias": False,
2657        "cross_apply": False,  # True -> CROSS APPLY, False -> OUTER APPLY
2658        "ordinality": False,
2659    }
2660
2661
2662# https://docs.snowflake.com/sql-reference/literals-table
2663# https://docs.snowflake.com/en/sql-reference/functions-table#using-a-table-function
2664class TableFromRows(UDTF):
2665    arg_types = {
2666        "this": True,
2667        "alias": False,
2668        "joins": False,
2669        "pivots": False,
2670        "sample": False,
2671    }
2672
2673
2674class MatchRecognizeMeasure(Expression):
2675    arg_types = {
2676        "this": True,
2677        "window_frame": False,
2678    }
2679
2680
2681class MatchRecognize(Expression):
2682    arg_types = {
2683        "partition_by": False,
2684        "order": False,
2685        "measures": False,
2686        "rows": False,
2687        "after": False,
2688        "pattern": False,
2689        "define": False,
2690        "alias": False,
2691    }
2692
2693
2694# Clickhouse FROM FINAL modifier
2695# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
2696class Final(Expression):
2697    pass
2698
2699
2700class Offset(Expression):
2701    arg_types = {"this": False, "expression": True, "expressions": False}
2702
2703
2704class Order(Expression):
2705    arg_types = {"this": False, "expressions": True, "siblings": False}
2706
2707
2708# https://clickhouse.com/docs/en/sql-reference/statements/select/order-by#order-by-expr-with-fill-modifier
2709class WithFill(Expression):
2710    arg_types = {
2711        "from": False,
2712        "to": False,
2713        "step": False,
2714        "interpolate": False,
2715    }
2716
2717
2718# hive specific sorts
2719# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
2720class Cluster(Order):
2721    pass
2722
2723
2724class Distribute(Order):
2725    pass
2726
2727
2728class Sort(Order):
2729    pass
2730
2731
2732class Ordered(Expression):
2733    arg_types = {"this": True, "desc": False, "nulls_first": True, "with_fill": False}
2734
2735    @property
2736    def name(self) -> str:
2737        return self.this.name
2738
2739
2740class Property(Expression):
2741    arg_types = {"this": True, "value": True}
2742
2743
2744class GrantPrivilege(Expression):
2745    arg_types = {"this": True, "expressions": False}
2746
2747
2748class GrantPrincipal(Expression):
2749    arg_types = {"this": True, "kind": False}
2750
2751
2752class AllowedValuesProperty(Expression):
2753    arg_types = {"expressions": True}
2754
2755
2756class AlgorithmProperty(Property):
2757    arg_types = {"this": True}
2758
2759
2760class AutoIncrementProperty(Property):
2761    arg_types = {"this": True}
2762
2763
2764# https://docs.aws.amazon.com/prescriptive-guidance/latest/materialized-views-redshift/refreshing-materialized-views.html
2765class AutoRefreshProperty(Property):
2766    arg_types = {"this": True}
2767
2768
2769class BackupProperty(Property):
2770    arg_types = {"this": True}
2771
2772
2773class BlockCompressionProperty(Property):
2774    arg_types = {
2775        "autotemp": False,
2776        "always": False,
2777        "default": False,
2778        "manual": False,
2779        "never": False,
2780    }
2781
2782
2783class CharacterSetProperty(Property):
2784    arg_types = {"this": True, "default": True}
2785
2786
2787class ChecksumProperty(Property):
2788    arg_types = {"on": False, "default": False}
2789
2790
2791class CollateProperty(Property):
2792    arg_types = {"this": True, "default": False}
2793
2794
2795class CopyGrantsProperty(Property):
2796    arg_types = {}
2797
2798
2799class DataBlocksizeProperty(Property):
2800    arg_types = {
2801        "size": False,
2802        "units": False,
2803        "minimum": False,
2804        "maximum": False,
2805        "default": False,
2806    }
2807
2808
2809class DataDeletionProperty(Property):
2810    arg_types = {"on": True, "filter_col": False, "retention_period": False}
2811
2812
2813class DefinerProperty(Property):
2814    arg_types = {"this": True}
2815
2816
2817class DistKeyProperty(Property):
2818    arg_types = {"this": True}
2819
2820
2821# https://docs.starrocks.io/docs/sql-reference/sql-statements/data-definition/CREATE_TABLE/#distribution_desc
2822# https://doris.apache.org/docs/sql-manual/sql-statements/Data-Definition-Statements/Create/CREATE-TABLE?_highlight=create&_highlight=table#distribution_desc
2823class DistributedByProperty(Property):
2824    arg_types = {"expressions": False, "kind": True, "buckets": False, "order": False}
2825
2826
2827class DistStyleProperty(Property):
2828    arg_types = {"this": True}
2829
2830
2831class DuplicateKeyProperty(Property):
2832    arg_types = {"expressions": True}
2833
2834
2835class EngineProperty(Property):
2836    arg_types = {"this": True}
2837
2838
2839class HeapProperty(Property):
2840    arg_types = {}
2841
2842
2843class ToTableProperty(Property):
2844    arg_types = {"this": True}
2845
2846
2847class ExecuteAsProperty(Property):
2848    arg_types = {"this": True}
2849
2850
2851class ExternalProperty(Property):
2852    arg_types = {"this": False}
2853
2854
2855class FallbackProperty(Property):
2856    arg_types = {"no": True, "protection": False}
2857
2858
2859class FileFormatProperty(Property):
2860    arg_types = {"this": False, "expressions": False}
2861
2862
2863class CredentialsProperty(Property):
2864    arg_types = {"expressions": True}
2865
2866
2867class FreespaceProperty(Property):
2868    arg_types = {"this": True, "percent": False}
2869
2870
2871class GlobalProperty(Property):
2872    arg_types = {}
2873
2874
2875class IcebergProperty(Property):
2876    arg_types = {}
2877
2878
2879class InheritsProperty(Property):
2880    arg_types = {"expressions": True}
2881
2882
2883class InputModelProperty(Property):
2884    arg_types = {"this": True}
2885
2886
2887class OutputModelProperty(Property):
2888    arg_types = {"this": True}
2889
2890
2891class IsolatedLoadingProperty(Property):
2892    arg_types = {"no": False, "concurrent": False, "target": False}
2893
2894
2895class JournalProperty(Property):
2896    arg_types = {
2897        "no": False,
2898        "dual": False,
2899        "before": False,
2900        "local": False,
2901        "after": False,
2902    }
2903
2904
2905class LanguageProperty(Property):
2906    arg_types = {"this": True}
2907
2908
2909class EnviromentProperty(Property):
2910    arg_types = {"expressions": True}
2911
2912
2913# spark ddl
2914class ClusteredByProperty(Property):
2915    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
2916
2917
2918class DictProperty(Property):
2919    arg_types = {"this": True, "kind": True, "settings": False}
2920
2921
2922class DictSubProperty(Property):
2923    pass
2924
2925
2926class DictRange(Property):
2927    arg_types = {"this": True, "min": True, "max": True}
2928
2929
2930class DynamicProperty(Property):
2931    arg_types = {}
2932
2933
2934# Clickhouse CREATE ... ON CLUSTER modifier
2935# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
2936class OnCluster(Property):
2937    arg_types = {"this": True}
2938
2939
2940# Clickhouse EMPTY table "property"
2941class EmptyProperty(Property):
2942    arg_types = {}
2943
2944
2945class LikeProperty(Property):
2946    arg_types = {"this": True, "expressions": False}
2947
2948
2949class LocationProperty(Property):
2950    arg_types = {"this": True}
2951
2952
2953class LockProperty(Property):
2954    arg_types = {"this": True}
2955
2956
2957class LockingProperty(Property):
2958    arg_types = {
2959        "this": False,
2960        "kind": True,
2961        "for_or_in": False,
2962        "lock_type": True,
2963        "override": False,
2964    }
2965
2966
2967class LogProperty(Property):
2968    arg_types = {"no": True}
2969
2970
2971class MaterializedProperty(Property):
2972    arg_types = {"this": False}
2973
2974
2975class MergeBlockRatioProperty(Property):
2976    arg_types = {"this": False, "no": False, "default": False, "percent": False}
2977
2978
2979class NoPrimaryIndexProperty(Property):
2980    arg_types = {}
2981
2982
2983class OnProperty(Property):
2984    arg_types = {"this": True}
2985
2986
2987class OnCommitProperty(Property):
2988    arg_types = {"delete": False}
2989
2990
2991class PartitionedByProperty(Property):
2992    arg_types = {"this": True}
2993
2994
2995class PartitionedByBucket(Property):
2996    arg_types = {"this": True, "expression": True}
2997
2998
2999class PartitionByTruncate(Property):
3000    arg_types = {"this": True, "expression": True}
3001
3002
3003# https://docs.starrocks.io/docs/sql-reference/sql-statements/table_bucket_part_index/CREATE_TABLE/
3004class PartitionByRangeProperty(Property):
3005    arg_types = {"partition_expressions": True, "create_expressions": True}
3006
3007
3008# https://docs.starrocks.io/docs/table_design/data_distribution/#range-partitioning
3009class PartitionByRangePropertyDynamic(Expression):
3010    arg_types = {"this": False, "start": True, "end": True, "every": True}
3011
3012
3013# https://docs.starrocks.io/docs/sql-reference/sql-statements/table_bucket_part_index/CREATE_TABLE/
3014class UniqueKeyProperty(Property):
3015    arg_types = {"expressions": True}
3016
3017
3018# https://www.postgresql.org/docs/current/sql-createtable.html
3019class PartitionBoundSpec(Expression):
3020    # this -> IN / MODULUS, expression -> REMAINDER, from_expressions -> FROM (...), to_expressions -> TO (...)
3021    arg_types = {
3022        "this": False,
3023        "expression": False,
3024        "from_expressions": False,
3025        "to_expressions": False,
3026    }
3027
3028
3029class PartitionedOfProperty(Property):
3030    # this -> parent_table (schema), expression -> FOR VALUES ... / DEFAULT
3031    arg_types = {"this": True, "expression": True}
3032
3033
3034class StreamingTableProperty(Property):
3035    arg_types = {}
3036
3037
3038class RemoteWithConnectionModelProperty(Property):
3039    arg_types = {"this": True}
3040
3041
3042class ReturnsProperty(Property):
3043    arg_types = {"this": False, "is_table": False, "table": False, "null": False}
3044
3045
3046class StrictProperty(Property):
3047    arg_types = {}
3048
3049
3050class RowFormatProperty(Property):
3051    arg_types = {"this": True}
3052
3053
3054class RowFormatDelimitedProperty(Property):
3055    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
3056    arg_types = {
3057        "fields": False,
3058        "escaped": False,
3059        "collection_items": False,
3060        "map_keys": False,
3061        "lines": False,
3062        "null": False,
3063        "serde": False,
3064    }
3065
3066
3067class RowFormatSerdeProperty(Property):
3068    arg_types = {"this": True, "serde_properties": False}
3069
3070
3071# https://spark.apache.org/docs/3.1.2/sql-ref-syntax-qry-select-transform.html
3072class QueryTransform(Expression):
3073    arg_types = {
3074        "expressions": True,
3075        "command_script": True,
3076        "schema": False,
3077        "row_format_before": False,
3078        "record_writer": False,
3079        "row_format_after": False,
3080        "record_reader": False,
3081    }
3082
3083
3084class SampleProperty(Property):
3085    arg_types = {"this": True}
3086
3087
3088# https://prestodb.io/docs/current/sql/create-view.html#synopsis
3089class SecurityProperty(Property):
3090    arg_types = {"this": True}
3091
3092
3093class SchemaCommentProperty(Property):
3094    arg_types = {"this": True}
3095
3096
3097class SerdeProperties(Property):
3098    arg_types = {"expressions": True, "with": False}
3099
3100
3101class SetProperty(Property):
3102    arg_types = {"multi": True}
3103
3104
3105class SharingProperty(Property):
3106    arg_types = {"this": False}
3107
3108
3109class SetConfigProperty(Property):
3110    arg_types = {"this": True}
3111
3112
3113class SettingsProperty(Property):
3114    arg_types = {"expressions": True}
3115
3116
3117class SortKeyProperty(Property):
3118    arg_types = {"this": True, "compound": False}
3119
3120
3121class SqlReadWriteProperty(Property):
3122    arg_types = {"this": True}
3123
3124
3125class SqlSecurityProperty(Property):
3126    arg_types = {"definer": True}
3127
3128
3129class StabilityProperty(Property):
3130    arg_types = {"this": True}
3131
3132
3133class StorageHandlerProperty(Property):
3134    arg_types = {"this": True}
3135
3136
3137class TemporaryProperty(Property):
3138    arg_types = {"this": False}
3139
3140
3141class SecureProperty(Property):
3142    arg_types = {}
3143
3144
3145# https://docs.snowflake.com/en/sql-reference/sql/create-table
3146class Tags(ColumnConstraintKind, Property):
3147    arg_types = {"expressions": True}
3148
3149
3150class TransformModelProperty(Property):
3151    arg_types = {"expressions": True}
3152
3153
3154class TransientProperty(Property):
3155    arg_types = {"this": False}
3156
3157
3158class UnloggedProperty(Property):
3159    arg_types = {}
3160
3161
3162# https://docs.snowflake.com/en/sql-reference/sql/create-table#create-table-using-template
3163class UsingTemplateProperty(Property):
3164    arg_types = {"this": True}
3165
3166
3167# https://learn.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver16
3168class ViewAttributeProperty(Property):
3169    arg_types = {"this": True}
3170
3171
3172class VolatileProperty(Property):
3173    arg_types = {"this": False}
3174
3175
3176class WithDataProperty(Property):
3177    arg_types = {"no": True, "statistics": False}
3178
3179
3180class WithJournalTableProperty(Property):
3181    arg_types = {"this": True}
3182
3183
3184class WithSchemaBindingProperty(Property):
3185    arg_types = {"this": True}
3186
3187
3188class WithSystemVersioningProperty(Property):
3189    arg_types = {
3190        "on": False,
3191        "this": False,
3192        "data_consistency": False,
3193        "retention_period": False,
3194        "with": True,
3195    }
3196
3197
3198class WithProcedureOptions(Property):
3199    arg_types = {"expressions": True}
3200
3201
3202class EncodeProperty(Property):
3203    arg_types = {"this": True, "properties": False, "key": False}
3204
3205
3206class IncludeProperty(Property):
3207    arg_types = {"this": True, "alias": False, "column_def": False}
3208
3209
3210class ForceProperty(Property):
3211    arg_types = {}
3212
3213
3214class Properties(Expression):
3215    arg_types = {"expressions": True}
3216
3217    NAME_TO_PROPERTY = {
3218        "ALGORITHM": AlgorithmProperty,
3219        "AUTO_INCREMENT": AutoIncrementProperty,
3220        "CHARACTER SET": CharacterSetProperty,
3221        "CLUSTERED_BY": ClusteredByProperty,
3222        "COLLATE": CollateProperty,
3223        "COMMENT": SchemaCommentProperty,
3224        "CREDENTIALS": CredentialsProperty,
3225        "DEFINER": DefinerProperty,
3226        "DISTKEY": DistKeyProperty,
3227        "DISTRIBUTED_BY": DistributedByProperty,
3228        "DISTSTYLE": DistStyleProperty,
3229        "ENGINE": EngineProperty,
3230        "EXECUTE AS": ExecuteAsProperty,
3231        "FORMAT": FileFormatProperty,
3232        "LANGUAGE": LanguageProperty,
3233        "LOCATION": LocationProperty,
3234        "LOCK": LockProperty,
3235        "PARTITIONED_BY": PartitionedByProperty,
3236        "RETURNS": ReturnsProperty,
3237        "ROW_FORMAT": RowFormatProperty,
3238        "SORTKEY": SortKeyProperty,
3239        "ENCODE": EncodeProperty,
3240        "INCLUDE": IncludeProperty,
3241    }
3242
3243    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
3244
3245    # CREATE property locations
3246    # Form: schema specified
3247    #   create [POST_CREATE]
3248    #     table a [POST_NAME]
3249    #     (b int) [POST_SCHEMA]
3250    #     with ([POST_WITH])
3251    #     index (b) [POST_INDEX]
3252    #
3253    # Form: alias selection
3254    #   create [POST_CREATE]
3255    #     table a [POST_NAME]
3256    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
3257    #     index (c) [POST_INDEX]
3258    class Location(AutoName):
3259        POST_CREATE = auto()
3260        POST_NAME = auto()
3261        POST_SCHEMA = auto()
3262        POST_WITH = auto()
3263        POST_ALIAS = auto()
3264        POST_EXPRESSION = auto()
3265        POST_INDEX = auto()
3266        UNSUPPORTED = auto()
3267
3268    @classmethod
3269    def from_dict(cls, properties_dict: t.Dict) -> Properties:
3270        expressions = []
3271        for key, value in properties_dict.items():
3272            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
3273            if property_cls:
3274                expressions.append(property_cls(this=convert(value)))
3275            else:
3276                expressions.append(Property(this=Literal.string(key), value=convert(value)))
3277
3278        return cls(expressions=expressions)
3279
3280
3281class Qualify(Expression):
3282    pass
3283
3284
3285class InputOutputFormat(Expression):
3286    arg_types = {"input_format": False, "output_format": False}
3287
3288
3289# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
3290class Return(Expression):
3291    pass
3292
3293
3294class Reference(Expression):
3295    arg_types = {"this": True, "expressions": False, "options": False}
3296
3297
3298class Tuple(Expression):
3299    arg_types = {"expressions": False}
3300
3301    def isin(
3302        self,
3303        *expressions: t.Any,
3304        query: t.Optional[ExpOrStr] = None,
3305        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
3306        copy: bool = True,
3307        **opts,
3308    ) -> In:
3309        return In(
3310            this=maybe_copy(self, copy),
3311            expressions=[convert(e, copy=copy) for e in expressions],
3312            query=maybe_parse(query, copy=copy, **opts) if query else None,
3313            unnest=(
3314                Unnest(
3315                    expressions=[
3316                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
3317                        for e in ensure_list(unnest)
3318                    ]
3319                )
3320                if unnest
3321                else None
3322            ),
3323        )
3324
3325
3326QUERY_MODIFIERS = {
3327    "match": False,
3328    "laterals": False,
3329    "joins": False,
3330    "connect": False,
3331    "pivots": False,
3332    "prewhere": False,
3333    "where": False,
3334    "group": False,
3335    "having": False,
3336    "qualify": False,
3337    "windows": False,
3338    "distribute": False,
3339    "sort": False,
3340    "cluster": False,
3341    "order": False,
3342    "limit": False,
3343    "offset": False,
3344    "locks": False,
3345    "sample": False,
3346    "settings": False,
3347    "format": False,
3348    "options": False,
3349}
3350
3351
3352# https://learn.microsoft.com/en-us/sql/t-sql/queries/option-clause-transact-sql?view=sql-server-ver16
3353# https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
3354class QueryOption(Expression):
3355    arg_types = {"this": True, "expression": False}
3356
3357
3358# https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
3359class WithTableHint(Expression):
3360    arg_types = {"expressions": True}
3361
3362
3363# https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
3364class IndexTableHint(Expression):
3365    arg_types = {"this": True, "expressions": False, "target": False}
3366
3367
3368# https://docs.snowflake.com/en/sql-reference/constructs/at-before
3369class HistoricalData(Expression):
3370    arg_types = {"this": True, "kind": True, "expression": True}
3371
3372
3373# https://docs.snowflake.com/en/sql-reference/sql/put
3374class Put(Expression):
3375    arg_types = {"this": True, "target": True, "properties": False}
3376
3377
3378# https://docs.snowflake.com/en/sql-reference/sql/get
3379class Get(Expression):
3380    arg_types = {"this": True, "target": True, "properties": False}
3381
3382
3383class Table(Expression):
3384    arg_types = {
3385        "this": False,
3386        "alias": False,
3387        "db": False,
3388        "catalog": False,
3389        "laterals": False,
3390        "joins": False,
3391        "pivots": False,
3392        "hints": False,
3393        "system_time": False,
3394        "version": False,
3395        "format": False,
3396        "pattern": False,
3397        "ordinality": False,
3398        "when": False,
3399        "only": False,
3400        "partition": False,
3401        "changes": False,
3402        "rows_from": False,
3403        "sample": False,
3404    }
3405
3406    @property
3407    def name(self) -> str:
3408        if not self.this or isinstance(self.this, Func):
3409            return ""
3410        return self.this.name
3411
3412    @property
3413    def db(self) -> str:
3414        return self.text("db")
3415
3416    @property
3417    def catalog(self) -> str:
3418        return self.text("catalog")
3419
3420    @property
3421    def selects(self) -> t.List[Expression]:
3422        return []
3423
3424    @property
3425    def named_selects(self) -> t.List[str]:
3426        return []
3427
3428    @property
3429    def parts(self) -> t.List[Expression]:
3430        """Return the parts of a table in order catalog, db, table."""
3431        parts: t.List[Expression] = []
3432
3433        for arg in ("catalog", "db", "this"):
3434            part = self.args.get(arg)
3435
3436            if isinstance(part, Dot):
3437                parts.extend(part.flatten())
3438            elif isinstance(part, Expression):
3439                parts.append(part)
3440
3441        return parts
3442
3443    def to_column(self, copy: bool = True) -> Expression:
3444        parts = self.parts
3445        last_part = parts[-1]
3446
3447        if isinstance(last_part, Identifier):
3448            col: Expression = column(*reversed(parts[0:4]), fields=parts[4:], copy=copy)  # type: ignore
3449        else:
3450            # This branch will be reached if a function or array is wrapped in a `Table`
3451            col = last_part
3452
3453        alias = self.args.get("alias")
3454        if alias:
3455            col = alias_(col, alias.this, copy=copy)
3456
3457        return col
3458
3459
3460class SetOperation(Query):
3461    arg_types = {
3462        "with": False,
3463        "this": True,
3464        "expression": True,
3465        "distinct": False,
3466        "by_name": False,
3467        "side": False,
3468        "kind": False,
3469        "on": False,
3470        **QUERY_MODIFIERS,
3471    }
3472
3473    def select(
3474        self: S,
3475        *expressions: t.Optional[ExpOrStr],
3476        append: bool = True,
3477        dialect: DialectType = None,
3478        copy: bool = True,
3479        **opts,
3480    ) -> S:
3481        this = maybe_copy(self, copy)
3482        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
3483        this.expression.unnest().select(
3484            *expressions, append=append, dialect=dialect, copy=False, **opts
3485        )
3486        return this
3487
3488    @property
3489    def named_selects(self) -> t.List[str]:
3490        return self.this.unnest().named_selects
3491
3492    @property
3493    def is_star(self) -> bool:
3494        return self.this.is_star or self.expression.is_star
3495
3496    @property
3497    def selects(self) -> t.List[Expression]:
3498        return self.this.unnest().selects
3499
3500    @property
3501    def left(self) -> Query:
3502        return self.this
3503
3504    @property
3505    def right(self) -> Query:
3506        return self.expression
3507
3508    @property
3509    def kind(self) -> str:
3510        return self.text("kind").upper()
3511
3512    @property
3513    def side(self) -> str:
3514        return self.text("side").upper()
3515
3516
3517class Union(SetOperation):
3518    pass
3519
3520
3521class Except(SetOperation):
3522    pass
3523
3524
3525class Intersect(SetOperation):
3526    pass
3527
3528
3529class Update(DML):
3530    arg_types = {
3531        "with": False,
3532        "this": False,
3533        "expressions": True,
3534        "from": False,
3535        "where": False,
3536        "returning": False,
3537        "order": False,
3538        "limit": False,
3539    }
3540
3541    def table(
3542        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3543    ) -> Update:
3544        """
3545        Set the table to update.
3546
3547        Example:
3548            >>> Update().table("my_table").set_("x = 1").sql()
3549            'UPDATE my_table SET x = 1'
3550
3551        Args:
3552            expression : the SQL code strings to parse.
3553                If a `Table` instance is passed, this is used as-is.
3554                If another `Expression` instance is passed, it will be wrapped in a `Table`.
3555            dialect: the dialect used to parse the input expression.
3556            copy: if `False`, modify this expression instance in-place.
3557            opts: other options to use to parse the input expressions.
3558
3559        Returns:
3560            The modified Update expression.
3561        """
3562        return _apply_builder(
3563            expression=expression,
3564            instance=self,
3565            arg="this",
3566            into=Table,
3567            prefix=None,
3568            dialect=dialect,
3569            copy=copy,
3570            **opts,
3571        )
3572
3573    def set_(
3574        self,
3575        *expressions: ExpOrStr,
3576        append: bool = True,
3577        dialect: DialectType = None,
3578        copy: bool = True,
3579        **opts,
3580    ) -> Update:
3581        """
3582        Append to or set the SET expressions.
3583
3584        Example:
3585            >>> Update().table("my_table").set_("x = 1").sql()
3586            'UPDATE my_table SET x = 1'
3587
3588        Args:
3589            *expressions: the SQL code strings to parse.
3590                If `Expression` instance(s) are passed, they will be used as-is.
3591                Multiple expressions are combined with a comma.
3592            append: if `True`, add the new expressions to any existing SET expressions.
3593                Otherwise, this resets the expressions.
3594            dialect: the dialect used to parse the input expressions.
3595            copy: if `False`, modify this expression instance in-place.
3596            opts: other options to use to parse the input expressions.
3597        """
3598        return _apply_list_builder(
3599            *expressions,
3600            instance=self,
3601            arg="expressions",
3602            append=append,
3603            into=Expression,
3604            prefix=None,
3605            dialect=dialect,
3606            copy=copy,
3607            **opts,
3608        )
3609
3610    def where(
3611        self,
3612        *expressions: t.Optional[ExpOrStr],
3613        append: bool = True,
3614        dialect: DialectType = None,
3615        copy: bool = True,
3616        **opts,
3617    ) -> Select:
3618        """
3619        Append to or set the WHERE expressions.
3620
3621        Example:
3622            >>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
3623            "UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
3624
3625        Args:
3626            *expressions: the SQL code strings to parse.
3627                If an `Expression` instance is passed, it will be used as-is.
3628                Multiple expressions are combined with an AND operator.
3629            append: if `True`, AND the new expressions to any existing expression.
3630                Otherwise, this resets the expression.
3631            dialect: the dialect used to parse the input expressions.
3632            copy: if `False`, modify this expression instance in-place.
3633            opts: other options to use to parse the input expressions.
3634
3635        Returns:
3636            Select: the modified expression.
3637        """
3638        return _apply_conjunction_builder(
3639            *expressions,
3640            instance=self,
3641            arg="where",
3642            append=append,
3643            into=Where,
3644            dialect=dialect,
3645            copy=copy,
3646            **opts,
3647        )
3648
3649    def from_(
3650        self,
3651        expression: t.Optional[ExpOrStr] = None,
3652        dialect: DialectType = None,
3653        copy: bool = True,
3654        **opts,
3655    ) -> Update:
3656        """
3657        Set the FROM expression.
3658
3659        Example:
3660            >>> Update().table("my_table").set_("x = 1").from_("baz").sql()
3661            'UPDATE my_table SET x = 1 FROM baz'
3662
3663        Args:
3664            expression : the SQL code strings to parse.
3665                If a `From` instance is passed, this is used as-is.
3666                If another `Expression` instance is passed, it will be wrapped in a `From`.
3667                If nothing is passed in then a from is not applied to the expression
3668            dialect: the dialect used to parse the input expression.
3669            copy: if `False`, modify this expression instance in-place.
3670            opts: other options to use to parse the input expressions.
3671
3672        Returns:
3673            The modified Update expression.
3674        """
3675        if not expression:
3676            return maybe_copy(self, copy)
3677
3678        return _apply_builder(
3679            expression=expression,
3680            instance=self,
3681            arg="from",
3682            into=From,
3683            prefix="FROM",
3684            dialect=dialect,
3685            copy=copy,
3686            **opts,
3687        )
3688
3689    def with_(
3690        self,
3691        alias: ExpOrStr,
3692        as_: ExpOrStr,
3693        recursive: t.Optional[bool] = None,
3694        materialized: t.Optional[bool] = None,
3695        append: bool = True,
3696        dialect: DialectType = None,
3697        copy: bool = True,
3698        **opts,
3699    ) -> Update:
3700        """
3701        Append to or set the common table expressions.
3702
3703        Example:
3704            >>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
3705            'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
3706
3707        Args:
3708            alias: the SQL code string to parse as the table name.
3709                If an `Expression` instance is passed, this is used as-is.
3710            as_: the SQL code string to parse as the table expression.
3711                If an `Expression` instance is passed, it will be used as-is.
3712            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
3713            materialized: set the MATERIALIZED part of the expression.
3714            append: if `True`, add to any existing expressions.
3715                Otherwise, this resets the expressions.
3716            dialect: the dialect used to parse the input expression.
3717            copy: if `False`, modify this expression instance in-place.
3718            opts: other options to use to parse the input expressions.
3719
3720        Returns:
3721            The modified expression.
3722        """
3723        return _apply_cte_builder(
3724            self,
3725            alias,
3726            as_,
3727            recursive=recursive,
3728            materialized=materialized,
3729            append=append,
3730            dialect=dialect,
3731            copy=copy,
3732            **opts,
3733        )
3734
3735
3736class Values(UDTF):
3737    arg_types = {"expressions": True, "alias": False}
3738
3739
3740class Var(Expression):
3741    pass
3742
3743
3744class Version(Expression):
3745    """
3746    Time travel, iceberg, bigquery etc
3747    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
3748    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
3749    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
3750    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
3751    this is either TIMESTAMP or VERSION
3752    kind is ("AS OF", "BETWEEN")
3753    """
3754
3755    arg_types = {"this": True, "kind": True, "expression": False}
3756
3757
3758class Schema(Expression):
3759    arg_types = {"this": False, "expressions": False}
3760
3761
3762# https://dev.mysql.com/doc/refman/8.0/en/select.html
3763# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
3764class Lock(Expression):
3765    arg_types = {"update": True, "expressions": False, "wait": False}
3766
3767
3768class Select(Query):
3769    arg_types = {
3770        "with": False,
3771        "kind": False,
3772        "expressions": False,
3773        "hint": False,
3774        "distinct": False,
3775        "into": False,
3776        "from": False,
3777        "operation_modifiers": False,
3778        **QUERY_MODIFIERS,
3779    }
3780
3781    def from_(
3782        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3783    ) -> Select:
3784        """
3785        Set the FROM expression.
3786
3787        Example:
3788            >>> Select().from_("tbl").select("x").sql()
3789            'SELECT x FROM tbl'
3790
3791        Args:
3792            expression : the SQL code strings to parse.
3793                If a `From` instance is passed, this is used as-is.
3794                If another `Expression` instance is passed, it will be wrapped in a `From`.
3795            dialect: the dialect used to parse the input expression.
3796            copy: if `False`, modify this expression instance in-place.
3797            opts: other options to use to parse the input expressions.
3798
3799        Returns:
3800            The modified Select expression.
3801        """
3802        return _apply_builder(
3803            expression=expression,
3804            instance=self,
3805            arg="from",
3806            into=From,
3807            prefix="FROM",
3808            dialect=dialect,
3809            copy=copy,
3810            **opts,
3811        )
3812
3813    def group_by(
3814        self,
3815        *expressions: t.Optional[ExpOrStr],
3816        append: bool = True,
3817        dialect: DialectType = None,
3818        copy: bool = True,
3819        **opts,
3820    ) -> Select:
3821        """
3822        Set the GROUP BY expression.
3823
3824        Example:
3825            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
3826            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
3827
3828        Args:
3829            *expressions: the SQL code strings to parse.
3830                If a `Group` instance is passed, this is used as-is.
3831                If another `Expression` instance is passed, it will be wrapped in a `Group`.
3832                If nothing is passed in then a group by is not applied to the expression
3833            append: if `True`, add to any existing expressions.
3834                Otherwise, this flattens all the `Group` expression into a single expression.
3835            dialect: the dialect used to parse the input expression.
3836            copy: if `False`, modify this expression instance in-place.
3837            opts: other options to use to parse the input expressions.
3838
3839        Returns:
3840            The modified Select expression.
3841        """
3842        if not expressions:
3843            return self if not copy else self.copy()
3844
3845        return _apply_child_list_builder(
3846            *expressions,
3847            instance=self,
3848            arg="group",
3849            append=append,
3850            copy=copy,
3851            prefix="GROUP BY",
3852            into=Group,
3853            dialect=dialect,
3854            **opts,
3855        )
3856
3857    def sort_by(
3858        self,
3859        *expressions: t.Optional[ExpOrStr],
3860        append: bool = True,
3861        dialect: DialectType = None,
3862        copy: bool = True,
3863        **opts,
3864    ) -> Select:
3865        """
3866        Set the SORT BY expression.
3867
3868        Example:
3869            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
3870            'SELECT x FROM tbl SORT BY x DESC'
3871
3872        Args:
3873            *expressions: the SQL code strings to parse.
3874                If a `Group` instance is passed, this is used as-is.
3875                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
3876            append: if `True`, add to any existing expressions.
3877                Otherwise, this flattens all the `Order` expression into a single expression.
3878            dialect: the dialect used to parse the input expression.
3879            copy: if `False`, modify this expression instance in-place.
3880            opts: other options to use to parse the input expressions.
3881
3882        Returns:
3883            The modified Select expression.
3884        """
3885        return _apply_child_list_builder(
3886            *expressions,
3887            instance=self,
3888            arg="sort",
3889            append=append,
3890            copy=copy,
3891            prefix="SORT BY",
3892            into=Sort,
3893            dialect=dialect,
3894            **opts,
3895        )
3896
3897    def cluster_by(
3898        self,
3899        *expressions: t.Optional[ExpOrStr],
3900        append: bool = True,
3901        dialect: DialectType = None,
3902        copy: bool = True,
3903        **opts,
3904    ) -> Select:
3905        """
3906        Set the CLUSTER BY expression.
3907
3908        Example:
3909            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
3910            'SELECT x FROM tbl CLUSTER BY x DESC'
3911
3912        Args:
3913            *expressions: the SQL code strings to parse.
3914                If a `Group` instance is passed, this is used as-is.
3915                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
3916            append: if `True`, add to any existing expressions.
3917                Otherwise, this flattens all the `Order` expression into a single expression.
3918            dialect: the dialect used to parse the input expression.
3919            copy: if `False`, modify this expression instance in-place.
3920            opts: other options to use to parse the input expressions.
3921
3922        Returns:
3923            The modified Select expression.
3924        """
3925        return _apply_child_list_builder(
3926            *expressions,
3927            instance=self,
3928            arg="cluster",
3929            append=append,
3930            copy=copy,
3931            prefix="CLUSTER BY",
3932            into=Cluster,
3933            dialect=dialect,
3934            **opts,
3935        )
3936
3937    def select(
3938        self,
3939        *expressions: t.Optional[ExpOrStr],
3940        append: bool = True,
3941        dialect: DialectType = None,
3942        copy: bool = True,
3943        **opts,
3944    ) -> Select:
3945        return _apply_list_builder(
3946            *expressions,
3947            instance=self,
3948            arg="expressions",
3949            append=append,
3950            dialect=dialect,
3951            into=Expression,
3952            copy=copy,
3953            **opts,
3954        )
3955
3956    def lateral(
3957        self,
3958        *expressions: t.Optional[ExpOrStr],
3959        append: bool = True,
3960        dialect: DialectType = None,
3961        copy: bool = True,
3962        **opts,
3963    ) -> Select:
3964        """
3965        Append to or set the LATERAL expressions.
3966
3967        Example:
3968            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3969            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3970
3971        Args:
3972            *expressions: the SQL code strings to parse.
3973                If an `Expression` instance is passed, it will be used as-is.
3974            append: if `True`, add to any existing expressions.
3975                Otherwise, this resets the expressions.
3976            dialect: the dialect used to parse the input expressions.
3977            copy: if `False`, modify this expression instance in-place.
3978            opts: other options to use to parse the input expressions.
3979
3980        Returns:
3981            The modified Select expression.
3982        """
3983        return _apply_list_builder(
3984            *expressions,
3985            instance=self,
3986            arg="laterals",
3987            append=append,
3988            into=Lateral,
3989            prefix="LATERAL VIEW",
3990            dialect=dialect,
3991            copy=copy,
3992            **opts,
3993        )
3994
3995    def join(
3996        self,
3997        expression: ExpOrStr,
3998        on: t.Optional[ExpOrStr] = None,
3999        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
4000        append: bool = True,
4001        join_type: t.Optional[str] = None,
4002        join_alias: t.Optional[Identifier | str] = None,
4003        dialect: DialectType = None,
4004        copy: bool = True,
4005        **opts,
4006    ) -> Select:
4007        """
4008        Append to or set the JOIN expressions.
4009
4010        Example:
4011            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
4012            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
4013
4014            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
4015            'SELECT 1 FROM a JOIN b USING (x, y, z)'
4016
4017            Use `join_type` to change the type of join:
4018
4019            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
4020            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
4021
4022        Args:
4023            expression: the SQL code string to parse.
4024                If an `Expression` instance is passed, it will be used as-is.
4025            on: optionally specify the join "on" criteria as a SQL string.
4026                If an `Expression` instance is passed, it will be used as-is.
4027            using: optionally specify the join "using" criteria as a SQL string.
4028                If an `Expression` instance is passed, it will be used as-is.
4029            append: if `True`, add to any existing expressions.
4030                Otherwise, this resets the expressions.
4031            join_type: if set, alter the parsed join type.
4032            join_alias: an optional alias for the joined source.
4033            dialect: the dialect used to parse the input expressions.
4034            copy: if `False`, modify this expression instance in-place.
4035            opts: other options to use to parse the input expressions.
4036
4037        Returns:
4038            Select: the modified expression.
4039        """
4040        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
4041
4042        try:
4043            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
4044        except ParseError:
4045            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
4046
4047        join = expression if isinstance(expression, Join) else Join(this=expression)
4048
4049        if isinstance(join.this, Select):
4050            join.this.replace(join.this.subquery())
4051
4052        if join_type:
4053            method: t.Optional[Token]
4054            side: t.Optional[Token]
4055            kind: t.Optional[Token]
4056
4057            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
4058
4059            if method:
4060                join.set("method", method.text)
4061            if side:
4062                join.set("side", side.text)
4063            if kind:
4064                join.set("kind", kind.text)
4065
4066        if on:
4067            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
4068            join.set("on", on)
4069
4070        if using:
4071            join = _apply_list_builder(
4072                *ensure_list(using),
4073                instance=join,
4074                arg="using",
4075                append=append,
4076                copy=copy,
4077                into=Identifier,
4078                **opts,
4079            )
4080
4081        if join_alias:
4082            join.set("this", alias_(join.this, join_alias, table=True))
4083
4084        return _apply_list_builder(
4085            join,
4086            instance=self,
4087            arg="joins",
4088            append=append,
4089            copy=copy,
4090            **opts,
4091        )
4092
4093    def having(
4094        self,
4095        *expressions: t.Optional[ExpOrStr],
4096        append: bool = True,
4097        dialect: DialectType = None,
4098        copy: bool = True,
4099        **opts,
4100    ) -> Select:
4101        """
4102        Append to or set the HAVING expressions.
4103
4104        Example:
4105            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
4106            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
4107
4108        Args:
4109            *expressions: the SQL code strings to parse.
4110                If an `Expression` instance is passed, it will be used as-is.
4111                Multiple expressions are combined with an AND operator.
4112            append: if `True`, AND the new expressions to any existing expression.
4113                Otherwise, this resets the expression.
4114            dialect: the dialect used to parse the input expressions.
4115            copy: if `False`, modify this expression instance in-place.
4116            opts: other options to use to parse the input expressions.
4117
4118        Returns:
4119            The modified Select expression.
4120        """
4121        return _apply_conjunction_builder(
4122            *expressions,
4123            instance=self,
4124            arg="having",
4125            append=append,
4126            into=Having,
4127            dialect=dialect,
4128            copy=copy,
4129            **opts,
4130        )
4131
4132    def window(
4133        self,
4134        *expressions: t.Optional[ExpOrStr],
4135        append: bool = True,
4136        dialect: DialectType = None,
4137        copy: bool = True,
4138        **opts,
4139    ) -> Select:
4140        return _apply_list_builder(
4141            *expressions,
4142            instance=self,
4143            arg="windows",
4144            append=append,
4145            into=Window,
4146            dialect=dialect,
4147            copy=copy,
4148            **opts,
4149        )
4150
4151    def qualify(
4152        self,
4153        *expressions: t.Optional[ExpOrStr],
4154        append: bool = True,
4155        dialect: DialectType = None,
4156        copy: bool = True,
4157        **opts,
4158    ) -> Select:
4159        return _apply_conjunction_builder(
4160            *expressions,
4161            instance=self,
4162            arg="qualify",
4163            append=append,
4164            into=Qualify,
4165            dialect=dialect,
4166            copy=copy,
4167            **opts,
4168        )
4169
4170    def distinct(
4171        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
4172    ) -> Select:
4173        """
4174        Set the OFFSET expression.
4175
4176        Example:
4177            >>> Select().from_("tbl").select("x").distinct().sql()
4178            'SELECT DISTINCT x FROM tbl'
4179
4180        Args:
4181            ons: the expressions to distinct on
4182            distinct: whether the Select should be distinct
4183            copy: if `False`, modify this expression instance in-place.
4184
4185        Returns:
4186            Select: the modified expression.
4187        """
4188        instance = maybe_copy(self, copy)
4189        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
4190        instance.set("distinct", Distinct(on=on) if distinct else None)
4191        return instance
4192
4193    def ctas(
4194        self,
4195        table: ExpOrStr,
4196        properties: t.Optional[t.Dict] = None,
4197        dialect: DialectType = None,
4198        copy: bool = True,
4199        **opts,
4200    ) -> Create:
4201        """
4202        Convert this expression to a CREATE TABLE AS statement.
4203
4204        Example:
4205            >>> Select().select("*").from_("tbl").ctas("x").sql()
4206            'CREATE TABLE x AS SELECT * FROM tbl'
4207
4208        Args:
4209            table: the SQL code string to parse as the table name.
4210                If another `Expression` instance is passed, it will be used as-is.
4211            properties: an optional mapping of table properties
4212            dialect: the dialect used to parse the input table.
4213            copy: if `False`, modify this expression instance in-place.
4214            opts: other options to use to parse the input table.
4215
4216        Returns:
4217            The new Create expression.
4218        """
4219        instance = maybe_copy(self, copy)
4220        table_expression = maybe_parse(table, into=Table, dialect=dialect, **opts)
4221
4222        properties_expression = None
4223        if properties:
4224            properties_expression = Properties.from_dict(properties)
4225
4226        return Create(
4227            this=table_expression,
4228            kind="TABLE",
4229            expression=instance,
4230            properties=properties_expression,
4231        )
4232
4233    def lock(self, update: bool = True, copy: bool = True) -> Select:
4234        """
4235        Set the locking read mode for this expression.
4236
4237        Examples:
4238            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
4239            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
4240
4241            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
4242            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
4243
4244        Args:
4245            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
4246            copy: if `False`, modify this expression instance in-place.
4247
4248        Returns:
4249            The modified expression.
4250        """
4251        inst = maybe_copy(self, copy)
4252        inst.set("locks", [Lock(update=update)])
4253
4254        return inst
4255
4256    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
4257        """
4258        Set hints for this expression.
4259
4260        Examples:
4261            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
4262            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
4263
4264        Args:
4265            hints: The SQL code strings to parse as the hints.
4266                If an `Expression` instance is passed, it will be used as-is.
4267            dialect: The dialect used to parse the hints.
4268            copy: If `False`, modify this expression instance in-place.
4269
4270        Returns:
4271            The modified expression.
4272        """
4273        inst = maybe_copy(self, copy)
4274        inst.set(
4275            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
4276        )
4277
4278        return inst
4279
4280    @property
4281    def named_selects(self) -> t.List[str]:
4282        return [e.output_name for e in self.expressions if e.alias_or_name]
4283
4284    @property
4285    def is_star(self) -> bool:
4286        return any(expression.is_star for expression in self.expressions)
4287
4288    @property
4289    def selects(self) -> t.List[Expression]:
4290        return self.expressions
4291
4292
4293UNWRAPPED_QUERIES = (Select, SetOperation)
4294
4295
4296class Subquery(DerivedTable, Query):
4297    arg_types = {
4298        "this": True,
4299        "alias": False,
4300        "with": False,
4301        **QUERY_MODIFIERS,
4302    }
4303
4304    def unnest(self):
4305        """Returns the first non subquery."""
4306        expression = self
4307        while isinstance(expression, Subquery):
4308            expression = expression.this
4309        return expression
4310
4311    def unwrap(self) -> Subquery:
4312        expression = self
4313        while expression.same_parent and expression.is_wrapper:
4314            expression = t.cast(Subquery, expression.parent)
4315        return expression
4316
4317    def select(
4318        self,
4319        *expressions: t.Optional[ExpOrStr],
4320        append: bool = True,
4321        dialect: DialectType = None,
4322        copy: bool = True,
4323        **opts,
4324    ) -> Subquery:
4325        this = maybe_copy(self, copy)
4326        this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
4327        return this
4328
4329    @property
4330    def is_wrapper(self) -> bool:
4331        """
4332        Whether this Subquery acts as a simple wrapper around another expression.
4333
4334        SELECT * FROM (((SELECT * FROM t)))
4335                      ^
4336                      This corresponds to a "wrapper" Subquery node
4337        """
4338        return all(v is None for k, v in self.args.items() if k != "this")
4339
4340    @property
4341    def is_star(self) -> bool:
4342        return self.this.is_star
4343
4344    @property
4345    def output_name(self) -> str:
4346        return self.alias
4347
4348
4349class TableSample(Expression):
4350    arg_types = {
4351        "expressions": False,
4352        "method": False,
4353        "bucket_numerator": False,
4354        "bucket_denominator": False,
4355        "bucket_field": False,
4356        "percent": False,
4357        "rows": False,
4358        "size": False,
4359        "seed": False,
4360    }
4361
4362
4363class Tag(Expression):
4364    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
4365
4366    arg_types = {
4367        "this": False,
4368        "prefix": False,
4369        "postfix": False,
4370    }
4371
4372
4373# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
4374# https://duckdb.org/docs/sql/statements/pivot
4375class Pivot(Expression):
4376    arg_types = {
4377        "this": False,
4378        "alias": False,
4379        "expressions": False,
4380        "fields": False,
4381        "unpivot": False,
4382        "using": False,
4383        "group": False,
4384        "columns": False,
4385        "include_nulls": False,
4386        "default_on_null": False,
4387        "into": False,
4388    }
4389
4390    @property
4391    def unpivot(self) -> bool:
4392        return bool(self.args.get("unpivot"))
4393
4394    @property
4395    def fields(self) -> t.List[Expression]:
4396        return self.args.get("fields", [])
4397
4398
4399# https://duckdb.org/docs/sql/statements/unpivot#simplified-unpivot-syntax
4400# UNPIVOT ... INTO [NAME <col_name> VALUE <col_value>][...,]
4401class UnpivotColumns(Expression):
4402    arg_types = {"this": True, "expressions": True}
4403
4404
4405class Window(Condition):
4406    arg_types = {
4407        "this": True,
4408        "partition_by": False,
4409        "order": False,
4410        "spec": False,
4411        "alias": False,
4412        "over": False,
4413        "first": False,
4414    }
4415
4416
4417class WindowSpec(Expression):
4418    arg_types = {
4419        "kind": False,
4420        "start": False,
4421        "start_side": False,
4422        "end": False,
4423        "end_side": False,
4424        "exclude": False,
4425    }
4426
4427
4428class PreWhere(Expression):
4429    pass
4430
4431
4432class Where(Expression):
4433    pass
4434
4435
4436class Star(Expression):
4437    arg_types = {"except": False, "replace": False, "rename": False}
4438
4439    @property
4440    def name(self) -> str:
4441        return "*"
4442
4443    @property
4444    def output_name(self) -> str:
4445        return self.name
4446
4447
4448class Parameter(Condition):
4449    arg_types = {"this": True, "expression": False}
4450
4451
4452class SessionParameter(Condition):
4453    arg_types = {"this": True, "kind": False}
4454
4455
4456# https://www.databricks.com/blog/parameterized-queries-pyspark
4457class Placeholder(Condition):
4458    arg_types = {"this": False, "kind": False, "widget": False}
4459
4460    @property
4461    def name(self) -> str:
4462        return self.this or "?"
4463
4464
4465class Null(Condition):
4466    arg_types: t.Dict[str, t.Any] = {}
4467
4468    @property
4469    def name(self) -> str:
4470        return "NULL"
4471
4472    def to_py(self) -> Lit[None]:
4473        return None
4474
4475
4476class Boolean(Condition):
4477    def to_py(self) -> bool:
4478        return self.this
4479
4480
4481class DataTypeParam(Expression):
4482    arg_types = {"this": True, "expression": False}
4483
4484    @property
4485    def name(self) -> str:
4486        return self.this.name
4487
4488
4489# The `nullable` arg is helpful when transpiling types from other dialects to ClickHouse, which
4490# assumes non-nullable types by default. Values `None` and `True` mean the type is nullable.
4491class DataType(Expression):
4492    arg_types = {
4493        "this": True,
4494        "expressions": False,
4495        "nested": False,
4496        "values": False,
4497        "prefix": False,
4498        "kind": False,
4499        "nullable": False,
4500    }
4501
4502    class Type(AutoName):
4503        ARRAY = auto()
4504        AGGREGATEFUNCTION = auto()
4505        SIMPLEAGGREGATEFUNCTION = auto()
4506        BIGDECIMAL = auto()
4507        BIGINT = auto()
4508        BIGSERIAL = auto()
4509        BINARY = auto()
4510        BIT = auto()
4511        BLOB = auto()
4512        BOOLEAN = auto()
4513        BPCHAR = auto()
4514        CHAR = auto()
4515        DATE = auto()
4516        DATE32 = auto()
4517        DATEMULTIRANGE = auto()
4518        DATERANGE = auto()
4519        DATETIME = auto()
4520        DATETIME2 = auto()
4521        DATETIME64 = auto()
4522        DECIMAL = auto()
4523        DECIMAL32 = auto()
4524        DECIMAL64 = auto()
4525        DECIMAL128 = auto()
4526        DECIMAL256 = auto()
4527        DOUBLE = auto()
4528        DYNAMIC = auto()
4529        ENUM = auto()
4530        ENUM8 = auto()
4531        ENUM16 = auto()
4532        FIXEDSTRING = auto()
4533        FLOAT = auto()
4534        GEOGRAPHY = auto()
4535        GEOMETRY = auto()
4536        POINT = auto()
4537        RING = auto()
4538        LINESTRING = auto()
4539        MULTILINESTRING = auto()
4540        POLYGON = auto()
4541        MULTIPOLYGON = auto()
4542        HLLSKETCH = auto()
4543        HSTORE = auto()
4544        IMAGE = auto()
4545        INET = auto()
4546        INT = auto()
4547        INT128 = auto()
4548        INT256 = auto()
4549        INT4MULTIRANGE = auto()
4550        INT4RANGE = auto()
4551        INT8MULTIRANGE = auto()
4552        INT8RANGE = auto()
4553        INTERVAL = auto()
4554        IPADDRESS = auto()
4555        IPPREFIX = auto()
4556        IPV4 = auto()
4557        IPV6 = auto()
4558        JSON = auto()
4559        JSONB = auto()
4560        LIST = auto()
4561        LONGBLOB = auto()
4562        LONGTEXT = auto()
4563        LOWCARDINALITY = auto()
4564        MAP = auto()
4565        MEDIUMBLOB = auto()
4566        MEDIUMINT = auto()
4567        MEDIUMTEXT = auto()
4568        MONEY = auto()
4569        NAME = auto()
4570        NCHAR = auto()
4571        NESTED = auto()
4572        NOTHING = auto()
4573        NULL = auto()
4574        NUMMULTIRANGE = auto()
4575        NUMRANGE = auto()
4576        NVARCHAR = auto()
4577        OBJECT = auto()
4578        RANGE = auto()
4579        ROWVERSION = auto()
4580        SERIAL = auto()
4581        SET = auto()
4582        SMALLDATETIME = auto()
4583        SMALLINT = auto()
4584        SMALLMONEY = auto()
4585        SMALLSERIAL = auto()
4586        STRUCT = auto()
4587        SUPER = auto()
4588        TEXT = auto()
4589        TINYBLOB = auto()
4590        TINYTEXT = auto()
4591        TIME = auto()
4592        TIMETZ = auto()
4593        TIMESTAMP = auto()
4594        TIMESTAMPNTZ = auto()
4595        TIMESTAMPLTZ = auto()
4596        TIMESTAMPTZ = auto()
4597        TIMESTAMP_S = auto()
4598        TIMESTAMP_MS = auto()
4599        TIMESTAMP_NS = auto()
4600        TINYINT = auto()
4601        TSMULTIRANGE = auto()
4602        TSRANGE = auto()
4603        TSTZMULTIRANGE = auto()
4604        TSTZRANGE = auto()
4605        UBIGINT = auto()
4606        UINT = auto()
4607        UINT128 = auto()
4608        UINT256 = auto()
4609        UMEDIUMINT = auto()
4610        UDECIMAL = auto()
4611        UDOUBLE = auto()
4612        UNION = auto()
4613        UNKNOWN = auto()  # Sentinel value, useful for type annotation
4614        USERDEFINED = "USER-DEFINED"
4615        USMALLINT = auto()
4616        UTINYINT = auto()
4617        UUID = auto()
4618        VARBINARY = auto()
4619        VARCHAR = auto()
4620        VARIANT = auto()
4621        VECTOR = auto()
4622        XML = auto()
4623        YEAR = auto()
4624        TDIGEST = auto()
4625
4626    STRUCT_TYPES = {
4627        Type.NESTED,
4628        Type.OBJECT,
4629        Type.STRUCT,
4630        Type.UNION,
4631    }
4632
4633    ARRAY_TYPES = {
4634        Type.ARRAY,
4635        Type.LIST,
4636    }
4637
4638    NESTED_TYPES = {
4639        *STRUCT_TYPES,
4640        *ARRAY_TYPES,
4641        Type.MAP,
4642    }
4643
4644    TEXT_TYPES = {
4645        Type.CHAR,
4646        Type.NCHAR,
4647        Type.NVARCHAR,
4648        Type.TEXT,
4649        Type.VARCHAR,
4650        Type.NAME,
4651    }
4652
4653    SIGNED_INTEGER_TYPES = {
4654        Type.BIGINT,
4655        Type.INT,
4656        Type.INT128,
4657        Type.INT256,
4658        Type.MEDIUMINT,
4659        Type.SMALLINT,
4660        Type.TINYINT,
4661    }
4662
4663    UNSIGNED_INTEGER_TYPES = {
4664        Type.UBIGINT,
4665        Type.UINT,
4666        Type.UINT128,
4667        Type.UINT256,
4668        Type.UMEDIUMINT,
4669        Type.USMALLINT,
4670        Type.UTINYINT,
4671    }
4672
4673    INTEGER_TYPES = {
4674        *SIGNED_INTEGER_TYPES,
4675        *UNSIGNED_INTEGER_TYPES,
4676        Type.BIT,
4677    }
4678
4679    FLOAT_TYPES = {
4680        Type.DOUBLE,
4681        Type.FLOAT,
4682    }
4683
4684    REAL_TYPES = {
4685        *FLOAT_TYPES,
4686        Type.BIGDECIMAL,
4687        Type.DECIMAL,
4688        Type.DECIMAL32,
4689        Type.DECIMAL64,
4690        Type.DECIMAL128,
4691        Type.DECIMAL256,
4692        Type.MONEY,
4693        Type.SMALLMONEY,
4694        Type.UDECIMAL,
4695        Type.UDOUBLE,
4696    }
4697
4698    NUMERIC_TYPES = {
4699        *INTEGER_TYPES,
4700        *REAL_TYPES,
4701    }
4702
4703    TEMPORAL_TYPES = {
4704        Type.DATE,
4705        Type.DATE32,
4706        Type.DATETIME,
4707        Type.DATETIME2,
4708        Type.DATETIME64,
4709        Type.SMALLDATETIME,
4710        Type.TIME,
4711        Type.TIMESTAMP,
4712        Type.TIMESTAMPNTZ,
4713        Type.TIMESTAMPLTZ,
4714        Type.TIMESTAMPTZ,
4715        Type.TIMESTAMP_MS,
4716        Type.TIMESTAMP_NS,
4717        Type.TIMESTAMP_S,
4718        Type.TIMETZ,
4719    }
4720
4721    @classmethod
4722    def build(
4723        cls,
4724        dtype: DATA_TYPE,
4725        dialect: DialectType = None,
4726        udt: bool = False,
4727        copy: bool = True,
4728        **kwargs,
4729    ) -> DataType:
4730        """
4731        Constructs a DataType object.
4732
4733        Args:
4734            dtype: the data type of interest.
4735            dialect: the dialect to use for parsing `dtype`, in case it's a string.
4736            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
4737                DataType, thus creating a user-defined type.
4738            copy: whether to copy the data type.
4739            kwargs: additional arguments to pass in the constructor of DataType.
4740
4741        Returns:
4742            The constructed DataType object.
4743        """
4744        from sqlglot import parse_one
4745
4746        if isinstance(dtype, str):
4747            if dtype.upper() == "UNKNOWN":
4748                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
4749
4750            try:
4751                data_type_exp = parse_one(
4752                    dtype, read=dialect, into=DataType, error_level=ErrorLevel.IGNORE
4753                )
4754            except ParseError:
4755                if udt:
4756                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4757                raise
4758        elif isinstance(dtype, (Identifier, Dot)) and udt:
4759            return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4760        elif isinstance(dtype, DataType.Type):
4761            data_type_exp = DataType(this=dtype)
4762        elif isinstance(dtype, DataType):
4763            return maybe_copy(dtype, copy)
4764        else:
4765            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
4766
4767        return DataType(**{**data_type_exp.args, **kwargs})
4768
4769    def is_type(self, *dtypes: DATA_TYPE, check_nullable: bool = False) -> bool:
4770        """
4771        Checks whether this DataType matches one of the provided data types. Nested types or precision
4772        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
4773
4774        Args:
4775            dtypes: the data types to compare this DataType to.
4776            check_nullable: whether to take the NULLABLE type constructor into account for the comparison.
4777                If false, it means that NULLABLE<INT> is equivalent to INT.
4778
4779        Returns:
4780            True, if and only if there is a type in `dtypes` which is equal to this DataType.
4781        """
4782        self_is_nullable = self.args.get("nullable")
4783        for dtype in dtypes:
4784            other_type = DataType.build(dtype, copy=False, udt=True)
4785            other_is_nullable = other_type.args.get("nullable")
4786            if (
4787                other_type.expressions
4788                or (check_nullable and (self_is_nullable or other_is_nullable))
4789                or self.this == DataType.Type.USERDEFINED
4790                or other_type.this == DataType.Type.USERDEFINED
4791            ):
4792                matches = self == other_type
4793            else:
4794                matches = self.this == other_type.this
4795
4796            if matches:
4797                return True
4798        return False
4799
4800
4801# https://www.postgresql.org/docs/15/datatype-pseudo.html
4802class PseudoType(DataType):
4803    arg_types = {"this": True}
4804
4805
4806# https://www.postgresql.org/docs/15/datatype-oid.html
4807class ObjectIdentifier(DataType):
4808    arg_types = {"this": True}
4809
4810
4811# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
4812class SubqueryPredicate(Predicate):
4813    pass
4814
4815
4816class All(SubqueryPredicate):
4817    pass
4818
4819
4820class Any(SubqueryPredicate):
4821    pass
4822
4823
4824# Commands to interact with the databases or engines. For most of the command
4825# expressions we parse whatever comes after the command's name as a string.
4826class Command(Expression):
4827    arg_types = {"this": True, "expression": False}
4828
4829
4830class Transaction(Expression):
4831    arg_types = {"this": False, "modes": False, "mark": False}
4832
4833
4834class Commit(Expression):
4835    arg_types = {"chain": False, "this": False, "durability": False}
4836
4837
4838class Rollback(Expression):
4839    arg_types = {"savepoint": False, "this": False}
4840
4841
4842class Alter(Expression):
4843    arg_types = {
4844        "this": True,
4845        "kind": True,
4846        "actions": True,
4847        "exists": False,
4848        "only": False,
4849        "options": False,
4850        "cluster": False,
4851        "not_valid": False,
4852    }
4853
4854    @property
4855    def kind(self) -> t.Optional[str]:
4856        kind = self.args.get("kind")
4857        return kind and kind.upper()
4858
4859    @property
4860    def actions(self) -> t.List[Expression]:
4861        return self.args.get("actions") or []
4862
4863
4864class Analyze(Expression):
4865    arg_types = {
4866        "kind": False,
4867        "this": False,
4868        "options": False,
4869        "mode": False,
4870        "partition": False,
4871        "expression": False,
4872        "properties": False,
4873    }
4874
4875
4876class AnalyzeStatistics(Expression):
4877    arg_types = {
4878        "kind": True,
4879        "option": False,
4880        "this": False,
4881        "expressions": False,
4882    }
4883
4884
4885class AnalyzeHistogram(Expression):
4886    arg_types = {
4887        "this": True,
4888        "expressions": True,
4889        "expression": False,
4890        "update_options": False,
4891    }
4892
4893
4894class AnalyzeSample(Expression):
4895    arg_types = {"kind": True, "sample": True}
4896
4897
4898class AnalyzeListChainedRows(Expression):
4899    arg_types = {"expression": False}
4900
4901
4902class AnalyzeDelete(Expression):
4903    arg_types = {"kind": False}
4904
4905
4906class AnalyzeWith(Expression):
4907    arg_types = {"expressions": True}
4908
4909
4910class AnalyzeValidate(Expression):
4911    arg_types = {
4912        "kind": True,
4913        "this": False,
4914        "expression": False,
4915    }
4916
4917
4918class AnalyzeColumns(Expression):
4919    pass
4920
4921
4922class UsingData(Expression):
4923    pass
4924
4925
4926class AddConstraint(Expression):
4927    arg_types = {"expressions": True}
4928
4929
4930class AddPartition(Expression):
4931    arg_types = {"this": True, "exists": False}
4932
4933
4934class AttachOption(Expression):
4935    arg_types = {"this": True, "expression": False}
4936
4937
4938class DropPartition(Expression):
4939    arg_types = {"expressions": True, "exists": False}
4940
4941
4942# https://clickhouse.com/docs/en/sql-reference/statements/alter/partition#replace-partition
4943class ReplacePartition(Expression):
4944    arg_types = {"expression": True, "source": True}
4945
4946
4947# Binary expressions like (ADD a b)
4948class Binary(Condition):
4949    arg_types = {"this": True, "expression": True}
4950
4951    @property
4952    def left(self) -> Expression:
4953        return self.this
4954
4955    @property
4956    def right(self) -> Expression:
4957        return self.expression
4958
4959
4960class Add(Binary):
4961    pass
4962
4963
4964class Connector(Binary):
4965    pass
4966
4967
4968class BitwiseAnd(Binary):
4969    pass
4970
4971
4972class BitwiseLeftShift(Binary):
4973    pass
4974
4975
4976class BitwiseOr(Binary):
4977    pass
4978
4979
4980class BitwiseRightShift(Binary):
4981    pass
4982
4983
4984class BitwiseXor(Binary):
4985    pass
4986
4987
4988class Div(Binary):
4989    arg_types = {"this": True, "expression": True, "typed": False, "safe": False}
4990
4991
4992class Overlaps(Binary):
4993    pass
4994
4995
4996class Dot(Binary):
4997    @property
4998    def is_star(self) -> bool:
4999        return self.expression.is_star
5000
5001    @property
5002    def name(self) -> str:
5003        return self.expression.name
5004
5005    @property
5006    def output_name(self) -> str:
5007        return self.name
5008
5009    @classmethod
5010    def build(self, expressions: t.Sequence[Expression]) -> Dot:
5011        """Build a Dot object with a sequence of expressions."""
5012        if len(expressions) < 2:
5013            raise ValueError("Dot requires >= 2 expressions.")
5014
5015        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
5016
5017    @property
5018    def parts(self) -> t.List[Expression]:
5019        """Return the parts of a table / column in order catalog, db, table."""
5020        this, *parts = self.flatten()
5021
5022        parts.reverse()
5023
5024        for arg in COLUMN_PARTS:
5025            part = this.args.get(arg)
5026
5027            if isinstance(part, Expression):
5028                parts.append(part)
5029
5030        parts.reverse()
5031        return parts
5032
5033
5034DATA_TYPE = t.Union[str, Identifier, Dot, DataType, DataType.Type]
5035
5036
5037class DPipe(Binary):
5038    arg_types = {"this": True, "expression": True, "safe": False}
5039
5040
5041class EQ(Binary, Predicate):
5042    pass
5043
5044
5045class NullSafeEQ(Binary, Predicate):
5046    pass
5047
5048
5049class NullSafeNEQ(Binary, Predicate):
5050    pass
5051
5052
5053# Represents e.g. := in DuckDB which is mostly used for setting parameters
5054class PropertyEQ(Binary):
5055    pass
5056
5057
5058class Distance(Binary):
5059    pass
5060
5061
5062class Escape(Binary):
5063    pass
5064
5065
5066class Glob(Binary, Predicate):
5067    pass
5068
5069
5070class GT(Binary, Predicate):
5071    pass
5072
5073
5074class GTE(Binary, Predicate):
5075    pass
5076
5077
5078class ILike(Binary, Predicate):
5079    pass
5080
5081
5082class ILikeAny(Binary, Predicate):
5083    pass
5084
5085
5086class IntDiv(Binary):
5087    pass
5088
5089
5090class Is(Binary, Predicate):
5091    pass
5092
5093
5094class Kwarg(Binary):
5095    """Kwarg in special functions like func(kwarg => y)."""
5096
5097
5098class Like(Binary, Predicate):
5099    pass
5100
5101
5102class LikeAny(Binary, Predicate):
5103    pass
5104
5105
5106class LT(Binary, Predicate):
5107    pass
5108
5109
5110class LTE(Binary, Predicate):
5111    pass
5112
5113
5114class Mod(Binary):
5115    pass
5116
5117
5118class Mul(Binary):
5119    pass
5120
5121
5122class NEQ(Binary, Predicate):
5123    pass
5124
5125
5126# https://www.postgresql.org/docs/current/ddl-schemas.html#DDL-SCHEMAS-PATH
5127class Operator(Binary):
5128    arg_types = {"this": True, "operator": True, "expression": True}
5129
5130
5131class SimilarTo(Binary, Predicate):
5132    pass
5133
5134
5135class Slice(Binary):
5136    arg_types = {"this": False, "expression": False}
5137
5138
5139class Sub(Binary):
5140    pass
5141
5142
5143# Unary Expressions
5144# (NOT a)
5145class Unary(Condition):
5146    pass
5147
5148
5149class BitwiseNot(Unary):
5150    pass
5151
5152
5153class Not(Unary):
5154    pass
5155
5156
5157class Paren(Unary):
5158    @property
5159    def output_name(self) -> str:
5160        return self.this.name
5161
5162
5163class Neg(Unary):
5164    def to_py(self) -> int | Decimal:
5165        if self.is_number:
5166            return self.this.to_py() * -1
5167        return super().to_py()
5168
5169
5170class Alias(Expression):
5171    arg_types = {"this": True, "alias": False}
5172
5173    @property
5174    def output_name(self) -> str:
5175        return self.alias
5176
5177
5178# BigQuery requires the UNPIVOT column list aliases to be either strings or ints, but
5179# other dialects require identifiers. This enables us to transpile between them easily.
5180class PivotAlias(Alias):
5181    pass
5182
5183
5184# Represents Snowflake's ANY [ ORDER BY ... ] syntax
5185# https://docs.snowflake.com/en/sql-reference/constructs/pivot
5186class PivotAny(Expression):
5187    arg_types = {"this": False}
5188
5189
5190class Aliases(Expression):
5191    arg_types = {"this": True, "expressions": True}
5192
5193    @property
5194    def aliases(self):
5195        return self.expressions
5196
5197
5198# https://docs.aws.amazon.com/redshift/latest/dg/query-super.html
5199class AtIndex(Expression):
5200    arg_types = {"this": True, "expression": True}
5201
5202
5203class AtTimeZone(Expression):
5204    arg_types = {"this": True, "zone": True}
5205
5206
5207class FromTimeZone(Expression):
5208    arg_types = {"this": True, "zone": True}
5209
5210
5211class Between(Predicate):
5212    arg_types = {"this": True, "low": True, "high": True}
5213
5214
5215class Bracket(Condition):
5216    # https://cloud.google.com/bigquery/docs/reference/standard-sql/operators#array_subscript_operator
5217    arg_types = {
5218        "this": True,
5219        "expressions": True,
5220        "offset": False,
5221        "safe": False,
5222        "returns_list_for_maps": False,
5223    }
5224
5225    @property
5226    def output_name(self) -> str:
5227        if len(self.expressions) == 1:
5228            return self.expressions[0].output_name
5229
5230        return super().output_name
5231
5232
5233class Distinct(Expression):
5234    arg_types = {"expressions": False, "on": False}
5235
5236
5237class In(Predicate):
5238    arg_types = {
5239        "this": True,
5240        "expressions": False,
5241        "query": False,
5242        "unnest": False,
5243        "field": False,
5244        "is_global": False,
5245    }
5246
5247
5248# https://cloud.google.com/bigquery/docs/reference/standard-sql/procedural-language#for-in
5249class ForIn(Expression):
5250    arg_types = {"this": True, "expression": True}
5251
5252
5253class TimeUnit(Expression):
5254    """Automatically converts unit arg into a var."""
5255
5256    arg_types = {"unit": False}
5257
5258    UNABBREVIATED_UNIT_NAME = {
5259        "D": "DAY",
5260        "H": "HOUR",
5261        "M": "MINUTE",
5262        "MS": "MILLISECOND",
5263        "NS": "NANOSECOND",
5264        "Q": "QUARTER",
5265        "S": "SECOND",
5266        "US": "MICROSECOND",
5267        "W": "WEEK",
5268        "Y": "YEAR",
5269    }
5270
5271    VAR_LIKE = (Column, Literal, Var)
5272
5273    def __init__(self, **args):
5274        unit = args.get("unit")
5275        if isinstance(unit, self.VAR_LIKE):
5276            args["unit"] = Var(
5277                this=(self.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5278            )
5279        elif isinstance(unit, Week):
5280            unit.set("this", Var(this=unit.this.name.upper()))
5281
5282        super().__init__(**args)
5283
5284    @property
5285    def unit(self) -> t.Optional[Var | IntervalSpan]:
5286        return self.args.get("unit")
5287
5288
5289class IntervalOp(TimeUnit):
5290    arg_types = {"unit": False, "expression": True}
5291
5292    def interval(self):
5293        return Interval(
5294            this=self.expression.copy(),
5295            unit=self.unit.copy() if self.unit else None,
5296        )
5297
5298
5299# https://www.oracletutorial.com/oracle-basics/oracle-interval/
5300# https://trino.io/docs/current/language/types.html#interval-day-to-second
5301# https://docs.databricks.com/en/sql/language-manual/data-types/interval-type.html
5302class IntervalSpan(DataType):
5303    arg_types = {"this": True, "expression": True}
5304
5305
5306class Interval(TimeUnit):
5307    arg_types = {"this": False, "unit": False}
5308
5309
5310class IgnoreNulls(Expression):
5311    pass
5312
5313
5314class RespectNulls(Expression):
5315    pass
5316
5317
5318# https://cloud.google.com/bigquery/docs/reference/standard-sql/aggregate-function-calls#max_min_clause
5319class HavingMax(Expression):
5320    arg_types = {"this": True, "expression": True, "max": True}
5321
5322
5323# Functions
5324class Func(Condition):
5325    """
5326    The base class for all function expressions.
5327
5328    Attributes:
5329        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
5330            treated as a variable length argument and the argument's value will be stored as a list.
5331        _sql_names (list): the SQL name (1st item in the list) and aliases (subsequent items) for this
5332            function expression. These values are used to map this node to a name during parsing as
5333            well as to provide the function's name during SQL string generation. By default the SQL
5334            name is set to the expression's class name transformed to snake case.
5335    """
5336
5337    is_var_len_args = False
5338
5339    @classmethod
5340    def from_arg_list(cls, args):
5341        if cls.is_var_len_args:
5342            all_arg_keys = list(cls.arg_types)
5343            # If this function supports variable length argument treat the last argument as such.
5344            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
5345            num_non_var = len(non_var_len_arg_keys)
5346
5347            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
5348            args_dict[all_arg_keys[-1]] = args[num_non_var:]
5349        else:
5350            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
5351
5352        return cls(**args_dict)
5353
5354    @classmethod
5355    def sql_names(cls):
5356        if cls is Func:
5357            raise NotImplementedError(
5358                "SQL name is only supported by concrete function implementations"
5359            )
5360        if "_sql_names" not in cls.__dict__:
5361            cls._sql_names = [camel_to_snake_case(cls.__name__)]
5362        return cls._sql_names
5363
5364    @classmethod
5365    def sql_name(cls):
5366        return cls.sql_names()[0]
5367
5368    @classmethod
5369    def default_parser_mappings(cls):
5370        return {name: cls.from_arg_list for name in cls.sql_names()}
5371
5372
5373class AggFunc(Func):
5374    pass
5375
5376
5377class ArrayRemove(Func):
5378    arg_types = {"this": True, "expression": True}
5379
5380
5381class ParameterizedAgg(AggFunc):
5382    arg_types = {"this": True, "expressions": True, "params": True}
5383
5384
5385class Abs(Func):
5386    pass
5387
5388
5389class ArgMax(AggFunc):
5390    arg_types = {"this": True, "expression": True, "count": False}
5391    _sql_names = ["ARG_MAX", "ARGMAX", "MAX_BY"]
5392
5393
5394class ArgMin(AggFunc):
5395    arg_types = {"this": True, "expression": True, "count": False}
5396    _sql_names = ["ARG_MIN", "ARGMIN", "MIN_BY"]
5397
5398
5399class ApproxTopK(AggFunc):
5400    arg_types = {"this": True, "expression": False, "counters": False}
5401
5402
5403class Flatten(Func):
5404    pass
5405
5406
5407# https://spark.apache.org/docs/latest/api/sql/index.html#transform
5408class Transform(Func):
5409    arg_types = {"this": True, "expression": True}
5410
5411
5412class Anonymous(Func):
5413    arg_types = {"this": True, "expressions": False}
5414    is_var_len_args = True
5415
5416    @property
5417    def name(self) -> str:
5418        return self.this if isinstance(self.this, str) else self.this.name
5419
5420
5421class AnonymousAggFunc(AggFunc):
5422    arg_types = {"this": True, "expressions": False}
5423    is_var_len_args = True
5424
5425
5426# https://clickhouse.com/docs/en/sql-reference/aggregate-functions/combinators
5427class CombinedAggFunc(AnonymousAggFunc):
5428    arg_types = {"this": True, "expressions": False}
5429
5430
5431class CombinedParameterizedAgg(ParameterizedAgg):
5432    arg_types = {"this": True, "expressions": True, "params": True}
5433
5434
5435# https://docs.snowflake.com/en/sql-reference/functions/hll
5436# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
5437class Hll(AggFunc):
5438    arg_types = {"this": True, "expressions": False}
5439    is_var_len_args = True
5440
5441
5442class ApproxDistinct(AggFunc):
5443    arg_types = {"this": True, "accuracy": False}
5444    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
5445
5446
5447class Apply(Func):
5448    arg_types = {"this": True, "expression": True}
5449
5450
5451class Array(Func):
5452    arg_types = {"expressions": False, "bracket_notation": False}
5453    is_var_len_args = True
5454
5455
5456# https://docs.snowflake.com/en/sql-reference/functions/to_array
5457class ToArray(Func):
5458    pass
5459
5460
5461# https://materialize.com/docs/sql/types/list/
5462class List(Func):
5463    arg_types = {"expressions": False}
5464    is_var_len_args = True
5465
5466
5467# String pad, kind True -> LPAD, False -> RPAD
5468class Pad(Func):
5469    arg_types = {"this": True, "expression": True, "fill_pattern": False, "is_left": True}
5470
5471
5472# https://docs.snowflake.com/en/sql-reference/functions/to_char
5473# https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/TO_CHAR-number.html
5474class ToChar(Func):
5475    arg_types = {"this": True, "format": False, "nlsparam": False}
5476
5477
5478# https://docs.snowflake.com/en/sql-reference/functions/to_decimal
5479# https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/TO_NUMBER.html
5480class ToNumber(Func):
5481    arg_types = {
5482        "this": True,
5483        "format": False,
5484        "nlsparam": False,
5485        "precision": False,
5486        "scale": False,
5487    }
5488
5489
5490# https://docs.snowflake.com/en/sql-reference/functions/to_double
5491class ToDouble(Func):
5492    arg_types = {
5493        "this": True,
5494        "format": False,
5495    }
5496
5497
5498class Columns(Func):
5499    arg_types = {"this": True, "unpack": False}
5500
5501
5502# https://learn.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver16#syntax
5503class Convert(Func):
5504    arg_types = {"this": True, "expression": True, "style": False}
5505
5506
5507# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CONVERT.html
5508class ConvertToCharset(Func):
5509    arg_types = {"this": True, "dest": True, "source": False}
5510
5511
5512class ConvertTimezone(Func):
5513    arg_types = {"source_tz": False, "target_tz": True, "timestamp": True}
5514
5515
5516class GenerateSeries(Func):
5517    arg_types = {"start": True, "end": True, "step": False, "is_end_exclusive": False}
5518
5519
5520# Postgres' GENERATE_SERIES function returns a row set, i.e. it implicitly explodes when it's
5521# used in a projection, so this expression is a helper that facilitates transpilation to other
5522# dialects. For example, we'd generate UNNEST(GENERATE_SERIES(...)) in DuckDB
5523class ExplodingGenerateSeries(GenerateSeries):
5524    pass
5525
5526
5527class ArrayAgg(AggFunc):
5528    arg_types = {"this": True, "nulls_excluded": False}
5529
5530
5531class ArrayUniqueAgg(AggFunc):
5532    pass
5533
5534
5535class ArrayAll(Func):
5536    arg_types = {"this": True, "expression": True}
5537
5538
5539# Represents Python's `any(f(x) for x in array)`, where `array` is `this` and `f` is `expression`
5540class ArrayAny(Func):
5541    arg_types = {"this": True, "expression": True}
5542
5543
5544class ArrayConcat(Func):
5545    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
5546    arg_types = {"this": True, "expressions": False}
5547    is_var_len_args = True
5548
5549
5550class ArrayConcatAgg(AggFunc):
5551    pass
5552
5553
5554class ArrayConstructCompact(Func):
5555    arg_types = {"expressions": True}
5556    is_var_len_args = True
5557
5558
5559class ArrayContains(Binary, Func):
5560    _sql_names = ["ARRAY_CONTAINS", "ARRAY_HAS"]
5561
5562
5563class ArrayContainsAll(Binary, Func):
5564    _sql_names = ["ARRAY_CONTAINS_ALL", "ARRAY_HAS_ALL"]
5565
5566
5567class ArrayFilter(Func):
5568    arg_types = {"this": True, "expression": True}
5569    _sql_names = ["FILTER", "ARRAY_FILTER"]
5570
5571
5572class ArrayToString(Func):
5573    arg_types = {"this": True, "expression": True, "null": False}
5574    _sql_names = ["ARRAY_TO_STRING", "ARRAY_JOIN"]
5575
5576
5577class ArrayIntersect(Func):
5578    arg_types = {"expressions": True}
5579    is_var_len_args = True
5580    _sql_names = ["ARRAY_INTERSECT", "ARRAY_INTERSECTION"]
5581
5582
5583class StPoint(Func):
5584    arg_types = {"this": True, "expression": True, "null": False}
5585    _sql_names = ["ST_POINT", "ST_MAKEPOINT"]
5586
5587
5588class StDistance(Func):
5589    arg_types = {"this": True, "expression": True, "use_spheroid": False}
5590
5591
5592# https://cloud.google.com/bigquery/docs/reference/standard-sql/timestamp_functions#string
5593class String(Func):
5594    arg_types = {"this": True, "zone": False}
5595
5596
5597class StringToArray(Func):
5598    arg_types = {"this": True, "expression": False, "null": False}
5599    _sql_names = ["STRING_TO_ARRAY", "SPLIT_BY_STRING", "STRTOK_TO_ARRAY"]
5600
5601
5602class ArrayOverlaps(Binary, Func):
5603    pass
5604
5605
5606class ArraySize(Func):
5607    arg_types = {"this": True, "expression": False}
5608    _sql_names = ["ARRAY_SIZE", "ARRAY_LENGTH"]
5609
5610
5611class ArraySort(Func):
5612    arg_types = {"this": True, "expression": False}
5613
5614
5615class ArraySum(Func):
5616    arg_types = {"this": True, "expression": False}
5617
5618
5619class ArrayUnionAgg(AggFunc):
5620    pass
5621
5622
5623class Avg(AggFunc):
5624    pass
5625
5626
5627class AnyValue(AggFunc):
5628    pass
5629
5630
5631class Lag(AggFunc):
5632    arg_types = {"this": True, "offset": False, "default": False}
5633
5634
5635class Lead(AggFunc):
5636    arg_types = {"this": True, "offset": False, "default": False}
5637
5638
5639# some dialects have a distinction between first and first_value, usually first is an aggregate func
5640# and first_value is a window func
5641class First(AggFunc):
5642    pass
5643
5644
5645class Last(AggFunc):
5646    pass
5647
5648
5649class FirstValue(AggFunc):
5650    pass
5651
5652
5653class LastValue(AggFunc):
5654    pass
5655
5656
5657class NthValue(AggFunc):
5658    arg_types = {"this": True, "offset": True}
5659
5660
5661class Case(Func):
5662    arg_types = {"this": False, "ifs": True, "default": False}
5663
5664    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
5665        instance = maybe_copy(self, copy)
5666        instance.append(
5667            "ifs",
5668            If(
5669                this=maybe_parse(condition, copy=copy, **opts),
5670                true=maybe_parse(then, copy=copy, **opts),
5671            ),
5672        )
5673        return instance
5674
5675    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
5676        instance = maybe_copy(self, copy)
5677        instance.set("default", maybe_parse(condition, copy=copy, **opts))
5678        return instance
5679
5680
5681class Cast(Func):
5682    arg_types = {
5683        "this": True,
5684        "to": True,
5685        "format": False,
5686        "safe": False,
5687        "action": False,
5688        "default": False,
5689    }
5690
5691    @property
5692    def name(self) -> str:
5693        return self.this.name
5694
5695    @property
5696    def to(self) -> DataType:
5697        return self.args["to"]
5698
5699    @property
5700    def output_name(self) -> str:
5701        return self.name
5702
5703    def is_type(self, *dtypes: DATA_TYPE) -> bool:
5704        """
5705        Checks whether this Cast's DataType matches one of the provided data types. Nested types
5706        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
5707        array<int> != array<float>.
5708
5709        Args:
5710            dtypes: the data types to compare this Cast's DataType to.
5711
5712        Returns:
5713            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
5714        """
5715        return self.to.is_type(*dtypes)
5716
5717
5718class TryCast(Cast):
5719    pass
5720
5721
5722# https://clickhouse.com/docs/sql-reference/data-types/newjson#reading-json-paths-as-sub-columns
5723class JSONCast(Cast):
5724    pass
5725
5726
5727class Try(Func):
5728    pass
5729
5730
5731class CastToStrType(Func):
5732    arg_types = {"this": True, "to": True}
5733
5734
5735# https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/SQL-Functions-Expressions-and-Predicates/String-Operators-and-Functions/TRANSLATE/TRANSLATE-Function-Syntax
5736class TranslateCharacters(Expression):
5737    arg_types = {"this": True, "expression": True, "with_error": False}
5738
5739
5740class Collate(Binary, Func):
5741    pass
5742
5743
5744class Ceil(Func):
5745    arg_types = {"this": True, "decimals": False, "to": False}
5746    _sql_names = ["CEIL", "CEILING"]
5747
5748
5749class Coalesce(Func):
5750    arg_types = {"this": True, "expressions": False, "is_nvl": False, "is_null": False}
5751    is_var_len_args = True
5752    _sql_names = ["COALESCE", "IFNULL", "NVL"]
5753
5754
5755class Chr(Func):
5756    arg_types = {"expressions": True, "charset": False}
5757    is_var_len_args = True
5758    _sql_names = ["CHR", "CHAR"]
5759
5760
5761class Concat(Func):
5762    arg_types = {"expressions": True, "safe": False, "coalesce": False}
5763    is_var_len_args = True
5764
5765
5766class ConcatWs(Concat):
5767    _sql_names = ["CONCAT_WS"]
5768
5769
5770class Contains(Func):
5771    arg_types = {"this": True, "expression": True}
5772
5773
5774# https://docs.oracle.com/cd/B13789_01/server.101/b10759/operators004.htm#i1035022
5775class ConnectByRoot(Func):
5776    pass
5777
5778
5779class Count(AggFunc):
5780    arg_types = {"this": False, "expressions": False, "big_int": False}
5781    is_var_len_args = True
5782
5783
5784class CountIf(AggFunc):
5785    _sql_names = ["COUNT_IF", "COUNTIF"]
5786
5787
5788# cube root
5789class Cbrt(Func):
5790    pass
5791
5792
5793class CurrentDate(Func):
5794    arg_types = {"this": False}
5795
5796
5797class CurrentDatetime(Func):
5798    arg_types = {"this": False}
5799
5800
5801class CurrentTime(Func):
5802    arg_types = {"this": False}
5803
5804
5805class CurrentTimestamp(Func):
5806    arg_types = {"this": False, "sysdate": False}
5807
5808
5809class CurrentTimestampLTZ(Func):
5810    arg_types = {}
5811
5812
5813class CurrentSchema(Func):
5814    arg_types = {"this": False}
5815
5816
5817class CurrentUser(Func):
5818    arg_types = {"this": False}
5819
5820
5821class DateAdd(Func, IntervalOp):
5822    arg_types = {"this": True, "expression": True, "unit": False}
5823
5824
5825class DateBin(Func, IntervalOp):
5826    arg_types = {"this": True, "expression": True, "unit": False, "zone": False}
5827
5828
5829class DateSub(Func, IntervalOp):
5830    arg_types = {"this": True, "expression": True, "unit": False}
5831
5832
5833class DateDiff(Func, TimeUnit):
5834    _sql_names = ["DATEDIFF", "DATE_DIFF"]
5835    arg_types = {"this": True, "expression": True, "unit": False, "zone": False}
5836
5837
5838class DateTrunc(Func):
5839    arg_types = {"unit": True, "this": True, "zone": False}
5840
5841    def __init__(self, **args):
5842        # Across most dialects it's safe to unabbreviate the unit (e.g. 'Q' -> 'QUARTER') except Oracle
5843        # https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/ROUND-and-TRUNC-Date-Functions.html
5844        unabbreviate = args.pop("unabbreviate", True)
5845
5846        unit = args.get("unit")
5847        if isinstance(unit, TimeUnit.VAR_LIKE):
5848            unit_name = unit.name.upper()
5849            if unabbreviate and unit_name in TimeUnit.UNABBREVIATED_UNIT_NAME:
5850                unit_name = TimeUnit.UNABBREVIATED_UNIT_NAME[unit_name]
5851
5852            args["unit"] = Literal.string(unit_name)
5853
5854        super().__init__(**args)
5855
5856    @property
5857    def unit(self) -> Expression:
5858        return self.args["unit"]
5859
5860
5861# https://cloud.google.com/bigquery/docs/reference/standard-sql/datetime_functions#datetime
5862# expression can either be time_expr or time_zone
5863class Datetime(Func):
5864    arg_types = {"this": True, "expression": False}
5865
5866
5867class DatetimeAdd(Func, IntervalOp):
5868    arg_types = {"this": True, "expression": True, "unit": False}
5869
5870
5871class DatetimeSub(Func, IntervalOp):
5872    arg_types = {"this": True, "expression": True, "unit": False}
5873
5874
5875class DatetimeDiff(Func, TimeUnit):
5876    arg_types = {"this": True, "expression": True, "unit": False}
5877
5878
5879class DatetimeTrunc(Func, TimeUnit):
5880    arg_types = {"this": True, "unit": True, "zone": False}
5881
5882
5883class DayOfWeek(Func):
5884    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
5885
5886
5887# https://duckdb.org/docs/sql/functions/datepart.html#part-specifiers-only-usable-as-date-part-specifiers
5888# ISO day of week function in duckdb is ISODOW
5889class DayOfWeekIso(Func):
5890    _sql_names = ["DAYOFWEEK_ISO", "ISODOW"]
5891
5892
5893class DayOfMonth(Func):
5894    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
5895
5896
5897class DayOfYear(Func):
5898    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
5899
5900
5901class ToDays(Func):
5902    pass
5903
5904
5905class WeekOfYear(Func):
5906    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
5907
5908
5909class MonthsBetween(Func):
5910    arg_types = {"this": True, "expression": True, "roundoff": False}
5911
5912
5913class MakeInterval(Func):
5914    arg_types = {
5915        "year": False,
5916        "month": False,
5917        "day": False,
5918        "hour": False,
5919        "minute": False,
5920        "second": False,
5921    }
5922
5923
5924class LastDay(Func, TimeUnit):
5925    _sql_names = ["LAST_DAY", "LAST_DAY_OF_MONTH"]
5926    arg_types = {"this": True, "unit": False}
5927
5928
5929class Extract(Func):
5930    arg_types = {"this": True, "expression": True}
5931
5932
5933class Exists(Func, SubqueryPredicate):
5934    arg_types = {"this": True, "expression": False}
5935
5936
5937class Timestamp(Func):
5938    arg_types = {"this": False, "zone": False, "with_tz": False}
5939
5940
5941class TimestampAdd(Func, TimeUnit):
5942    arg_types = {"this": True, "expression": True, "unit": False}
5943
5944
5945class TimestampSub(Func, TimeUnit):
5946    arg_types = {"this": True, "expression": True, "unit": False}
5947
5948
5949class TimestampDiff(Func, TimeUnit):
5950    _sql_names = ["TIMESTAMPDIFF", "TIMESTAMP_DIFF"]
5951    arg_types = {"this": True, "expression": True, "unit": False}
5952
5953
5954class TimestampTrunc(Func, TimeUnit):
5955    arg_types = {"this": True, "unit": True, "zone": False}
5956
5957
5958class TimeAdd(Func, TimeUnit):
5959    arg_types = {"this": True, "expression": True, "unit": False}
5960
5961
5962class TimeSub(Func, TimeUnit):
5963    arg_types = {"this": True, "expression": True, "unit": False}
5964
5965
5966class TimeDiff(Func, TimeUnit):
5967    arg_types = {"this": True, "expression": True, "unit": False}
5968
5969
5970class TimeTrunc(Func, TimeUnit):
5971    arg_types = {"this": True, "unit": True, "zone": False}
5972
5973
5974class DateFromParts(Func):
5975    _sql_names = ["DATE_FROM_PARTS", "DATEFROMPARTS"]
5976    arg_types = {"year": True, "month": True, "day": True}
5977
5978
5979class TimeFromParts(Func):
5980    _sql_names = ["TIME_FROM_PARTS", "TIMEFROMPARTS"]
5981    arg_types = {
5982        "hour": True,
5983        "min": True,
5984        "sec": True,
5985        "nano": False,
5986        "fractions": False,
5987        "precision": False,
5988    }
5989
5990
5991class DateStrToDate(Func):
5992    pass
5993
5994
5995class DateToDateStr(Func):
5996    pass
5997
5998
5999class DateToDi(Func):
6000    pass
6001
6002
6003# https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions#date
6004class Date(Func):
6005    arg_types = {"this": False, "zone": False, "expressions": False}
6006    is_var_len_args = True
6007
6008
6009class Day(Func):
6010    pass
6011
6012
6013class Decode(Func):
6014    arg_types = {"this": True, "charset": True, "replace": False}
6015
6016
6017class DiToDate(Func):
6018    pass
6019
6020
6021class Encode(Func):
6022    arg_types = {"this": True, "charset": True}
6023
6024
6025class Exp(Func):
6026    pass
6027
6028
6029# https://docs.snowflake.com/en/sql-reference/functions/flatten
6030class Explode(Func, UDTF):
6031    arg_types = {"this": True, "expressions": False}
6032    is_var_len_args = True
6033
6034
6035# https://spark.apache.org/docs/latest/api/sql/#inline
6036class Inline(Func):
6037    pass
6038
6039
6040class ExplodeOuter(Explode):
6041    pass
6042
6043
6044class Posexplode(Explode):
6045    pass
6046
6047
6048class PosexplodeOuter(Posexplode, ExplodeOuter):
6049    pass
6050
6051
6052class Unnest(Func, UDTF):
6053    arg_types = {
6054        "expressions": True,
6055        "alias": False,
6056        "offset": False,
6057        "explode_array": False,
6058    }
6059
6060    @property
6061    def selects(self) -> t.List[Expression]:
6062        columns = super().selects
6063        offset = self.args.get("offset")
6064        if offset:
6065            columns = columns + [to_identifier("offset") if offset is True else offset]
6066        return columns
6067
6068
6069class Floor(Func):
6070    arg_types = {"this": True, "decimals": False, "to": False}
6071
6072
6073class FromBase64(Func):
6074    pass
6075
6076
6077class FeaturesAtTime(Func):
6078    arg_types = {"this": True, "time": False, "num_rows": False, "ignore_feature_nulls": False}
6079
6080
6081class ToBase64(Func):
6082    pass
6083
6084
6085# https://trino.io/docs/current/functions/datetime.html#from_iso8601_timestamp
6086class FromISO8601Timestamp(Func):
6087    _sql_names = ["FROM_ISO8601_TIMESTAMP"]
6088
6089
6090class GapFill(Func):
6091    arg_types = {
6092        "this": True,
6093        "ts_column": True,
6094        "bucket_width": True,
6095        "partitioning_columns": False,
6096        "value_columns": False,
6097        "origin": False,
6098        "ignore_nulls": False,
6099    }
6100
6101
6102# https://cloud.google.com/bigquery/docs/reference/standard-sql/array_functions#generate_date_array
6103class GenerateDateArray(Func):
6104    arg_types = {"start": True, "end": True, "step": False}
6105
6106
6107# https://cloud.google.com/bigquery/docs/reference/standard-sql/array_functions#generate_timestamp_array
6108class GenerateTimestampArray(Func):
6109    arg_types = {"start": True, "end": True, "step": True}
6110
6111
6112class Greatest(Func):
6113    arg_types = {"this": True, "expressions": False}
6114    is_var_len_args = True
6115
6116
6117# Trino's `ON OVERFLOW TRUNCATE [filler_string] {WITH | WITHOUT} COUNT`
6118# https://trino.io/docs/current/functions/aggregate.html#listagg
6119class OverflowTruncateBehavior(Expression):
6120    arg_types = {"this": False, "with_count": True}
6121
6122
6123class GroupConcat(AggFunc):
6124    arg_types = {"this": True, "separator": False, "on_overflow": False}
6125
6126
6127class Hex(Func):
6128    pass
6129
6130
6131class LowerHex(Hex):
6132    pass
6133
6134
6135class And(Connector, Func):
6136    pass
6137
6138
6139class Or(Connector, Func):
6140    pass
6141
6142
6143class Xor(Connector, Func):
6144    arg_types = {"this": False, "expression": False, "expressions": False}
6145
6146
6147class If(Func):
6148    arg_types = {"this": True, "true": True, "false": False}
6149    _sql_names = ["IF", "IIF"]
6150
6151
6152class Nullif(Func):
6153    arg_types = {"this": True, "expression": True}
6154
6155
6156class Initcap(Func):
6157    arg_types = {"this": True, "expression": False}
6158
6159
6160class IsAscii(Func):
6161    pass
6162
6163
6164class IsNan(Func):
6165    _sql_names = ["IS_NAN", "ISNAN"]
6166
6167
6168# https://cloud.google.com/bigquery/docs/reference/standard-sql/json_functions#int64_for_json
6169class Int64(Func):
6170    pass
6171
6172
6173class IsInf(Func):
6174    _sql_names = ["IS_INF", "ISINF"]
6175
6176
6177# https://www.postgresql.org/docs/current/functions-json.html
6178class JSON(Expression):
6179    arg_types = {"this": False, "with": False, "unique": False}
6180
6181
6182class JSONPath(Expression):
6183    arg_types = {"expressions": True, "escape": False}
6184
6185    @property
6186    def output_name(self) -> str:
6187        last_segment = self.expressions[-1].this
6188        return last_segment if isinstance(last_segment, str) else ""
6189
6190
6191class JSONPathPart(Expression):
6192    arg_types = {}
6193
6194
6195class JSONPathFilter(JSONPathPart):
6196    arg_types = {"this": True}
6197
6198
6199class JSONPathKey(JSONPathPart):
6200    arg_types = {"this": True}
6201
6202
6203class JSONPathRecursive(JSONPathPart):
6204    arg_types = {"this": False}
6205
6206
6207class JSONPathRoot(JSONPathPart):
6208    pass
6209
6210
6211class JSONPathScript(JSONPathPart):
6212    arg_types = {"this": True}
6213
6214
6215class JSONPathSlice(JSONPathPart):
6216    arg_types = {"start": False, "end": False, "step": False}
6217
6218
6219class JSONPathSelector(JSONPathPart):
6220    arg_types = {"this": True}
6221
6222
6223class JSONPathSubscript(JSONPathPart):
6224    arg_types = {"this": True}
6225
6226
6227class JSONPathUnion(JSONPathPart):
6228    arg_types = {"expressions": True}
6229
6230
6231class JSONPathWildcard(JSONPathPart):
6232    pass
6233
6234
6235class FormatJson(Expression):
6236    pass
6237
6238
6239class JSONKeyValue(Expression):
6240    arg_types = {"this": True, "expression": True}
6241
6242
6243class JSONObject(Func):
6244    arg_types = {
6245        "expressions": False,
6246        "null_handling": False,
6247        "unique_keys": False,
6248        "return_type": False,
6249        "encoding": False,
6250    }
6251
6252
6253class JSONObjectAgg(AggFunc):
6254    arg_types = {
6255        "expressions": False,
6256        "null_handling": False,
6257        "unique_keys": False,
6258        "return_type": False,
6259        "encoding": False,
6260    }
6261
6262
6263# https://www.postgresql.org/docs/9.5/functions-aggregate.html
6264class JSONBObjectAgg(AggFunc):
6265    arg_types = {"this": True, "expression": True}
6266
6267
6268# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAY.html
6269class JSONArray(Func):
6270    arg_types = {
6271        "expressions": True,
6272        "null_handling": False,
6273        "return_type": False,
6274        "strict": False,
6275    }
6276
6277
6278# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAYAGG.html
6279class JSONArrayAgg(Func):
6280    arg_types = {
6281        "this": True,
6282        "order": False,
6283        "null_handling": False,
6284        "return_type": False,
6285        "strict": False,
6286    }
6287
6288
6289class JSONExists(Func):
6290    arg_types = {"this": True, "path": True, "passing": False, "on_condition": False}
6291
6292
6293# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
6294# Note: parsing of JSON column definitions is currently incomplete.
6295class JSONColumnDef(Expression):
6296    arg_types = {"this": False, "kind": False, "path": False, "nested_schema": False}
6297
6298
6299class JSONSchema(Expression):
6300    arg_types = {"expressions": True}
6301
6302
6303# https://dev.mysql.com/doc/refman/8.4/en/json-search-functions.html#function_json-value
6304class JSONValue(Expression):
6305    arg_types = {
6306        "this": True,
6307        "path": True,
6308        "returning": False,
6309        "on_condition": False,
6310    }
6311
6312
6313class JSONValueArray(Func):
6314    arg_types = {"this": True, "expression": False}
6315
6316
6317# # https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
6318class JSONTable(Func):
6319    arg_types = {
6320        "this": True,
6321        "schema": True,
6322        "path": False,
6323        "error_handling": False,
6324        "empty_handling": False,
6325    }
6326
6327
6328# https://docs.snowflake.com/en/sql-reference/functions/object_insert
6329class ObjectInsert(Func):
6330    arg_types = {
6331        "this": True,
6332        "key": True,
6333        "value": True,
6334        "update_flag": False,
6335    }
6336
6337
6338class OpenJSONColumnDef(Expression):
6339    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
6340
6341
6342class OpenJSON(Func):
6343    arg_types = {"this": True, "path": False, "expressions": False}
6344
6345
6346class JSONBContains(Binary, Func):
6347    _sql_names = ["JSONB_CONTAINS"]
6348
6349
6350class JSONBExists(Func):
6351    arg_types = {"this": True, "path": True}
6352    _sql_names = ["JSONB_EXISTS"]
6353
6354
6355class JSONExtract(Binary, Func):
6356    arg_types = {
6357        "this": True,
6358        "expression": True,
6359        "only_json_types": False,
6360        "expressions": False,
6361        "variant_extract": False,
6362        "json_query": False,
6363        "option": False,
6364        "quote": False,
6365        "on_condition": False,
6366    }
6367    _sql_names = ["JSON_EXTRACT"]
6368    is_var_len_args = True
6369
6370    @property
6371    def output_name(self) -> str:
6372        return self.expression.output_name if not self.expressions else ""
6373
6374
6375# https://trino.io/docs/current/functions/json.html#json-query
6376class JSONExtractQuote(Expression):
6377    arg_types = {
6378        "option": True,
6379        "scalar": False,
6380    }
6381
6382
6383class JSONExtractArray(Func):
6384    arg_types = {"this": True, "expression": False}
6385    _sql_names = ["JSON_EXTRACT_ARRAY"]
6386
6387
6388class JSONExtractScalar(Binary, Func):
6389    arg_types = {"this": True, "expression": True, "only_json_types": False, "expressions": False}
6390    _sql_names = ["JSON_EXTRACT_SCALAR"]
6391    is_var_len_args = True
6392
6393    @property
6394    def output_name(self) -> str:
6395        return self.expression.output_name
6396
6397
6398class JSONBExtract(Binary, Func):
6399    _sql_names = ["JSONB_EXTRACT"]
6400
6401
6402class JSONBExtractScalar(Binary, Func):
6403    _sql_names = ["JSONB_EXTRACT_SCALAR"]
6404
6405
6406class JSONFormat(Func):
6407    arg_types = {"this": False, "options": False, "is_json": False}
6408    _sql_names = ["JSON_FORMAT"]
6409
6410
6411# https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#operator_member-of
6412class JSONArrayContains(Binary, Predicate, Func):
6413    _sql_names = ["JSON_ARRAY_CONTAINS"]
6414
6415
6416class ParseJSON(Func):
6417    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
6418    # Snowflake also has TRY_PARSE_JSON, which is represented using `safe`
6419    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
6420    arg_types = {"this": True, "expression": False, "safe": False}
6421
6422
6423class Least(Func):
6424    arg_types = {"this": True, "expressions": False}
6425    is_var_len_args = True
6426
6427
6428class Left(Func):
6429    arg_types = {"this": True, "expression": True}
6430
6431
6432class Right(Func):
6433    arg_types = {"this": True, "expression": True}
6434
6435
6436class Length(Func):
6437    arg_types = {"this": True, "binary": False, "encoding": False}
6438    _sql_names = ["LENGTH", "LEN", "CHAR_LENGTH", "CHARACTER_LENGTH"]
6439
6440
6441class Levenshtein(Func):
6442    arg_types = {
6443        "this": True,
6444        "expression": False,
6445        "ins_cost": False,
6446        "del_cost": False,
6447        "sub_cost": False,
6448        "max_dist": False,
6449    }
6450
6451
6452class Ln(Func):
6453    pass
6454
6455
6456class Log(Func):
6457    arg_types = {"this": True, "expression": False}
6458
6459
6460class LogicalOr(AggFunc):
6461    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
6462
6463
6464class LogicalAnd(AggFunc):
6465    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
6466
6467
6468class Lower(Func):
6469    _sql_names = ["LOWER", "LCASE"]
6470
6471
6472class Map(Func):
6473    arg_types = {"keys": False, "values": False}
6474
6475    @property
6476    def keys(self) -> t.List[Expression]:
6477        keys = self.args.get("keys")
6478        return keys.expressions if keys else []
6479
6480    @property
6481    def values(self) -> t.List[Expression]:
6482        values = self.args.get("values")
6483        return values.expressions if values else []
6484
6485
6486# Represents the MAP {...} syntax in DuckDB - basically convert a struct to a MAP
6487class ToMap(Func):
6488    pass
6489
6490
6491class MapFromEntries(Func):
6492    pass
6493
6494
6495# https://learn.microsoft.com/en-us/sql/t-sql/language-elements/scope-resolution-operator-transact-sql?view=sql-server-ver16
6496class ScopeResolution(Expression):
6497    arg_types = {"this": False, "expression": True}
6498
6499
6500class Stream(Expression):
6501    pass
6502
6503
6504class StarMap(Func):
6505    pass
6506
6507
6508class VarMap(Func):
6509    arg_types = {"keys": True, "values": True}
6510    is_var_len_args = True
6511
6512    @property
6513    def keys(self) -> t.List[Expression]:
6514        return self.args["keys"].expressions
6515
6516    @property
6517    def values(self) -> t.List[Expression]:
6518        return self.args["values"].expressions
6519
6520
6521# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
6522class MatchAgainst(Func):
6523    arg_types = {"this": True, "expressions": True, "modifier": False}
6524
6525
6526class Max(AggFunc):
6527    arg_types = {"this": True, "expressions": False}
6528    is_var_len_args = True
6529
6530
6531class MD5(Func):
6532    _sql_names = ["MD5"]
6533
6534
6535# Represents the variant of the MD5 function that returns a binary value
6536class MD5Digest(Func):
6537    _sql_names = ["MD5_DIGEST"]
6538
6539
6540class Median(AggFunc):
6541    pass
6542
6543
6544class Min(AggFunc):
6545    arg_types = {"this": True, "expressions": False}
6546    is_var_len_args = True
6547
6548
6549class Month(Func):
6550    pass
6551
6552
6553class AddMonths(Func):
6554    arg_types = {"this": True, "expression": True}
6555
6556
6557class Nvl2(Func):
6558    arg_types = {"this": True, "true": True, "false": False}
6559
6560
6561class Normalize(Func):
6562    arg_types = {"this": True, "form": False}
6563
6564
6565class Overlay(Func):
6566    arg_types = {"this": True, "expression": True, "from": True, "for": False}
6567
6568
6569# https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict#mlpredict_function
6570class Predict(Func):
6571    arg_types = {"this": True, "expression": True, "params_struct": False}
6572
6573
6574class Pow(Binary, Func):
6575    _sql_names = ["POWER", "POW"]
6576
6577
6578class PercentileCont(AggFunc):
6579    arg_types = {"this": True, "expression": False}
6580
6581
6582class PercentileDisc(AggFunc):
6583    arg_types = {"this": True, "expression": False}
6584
6585
6586class Quantile(AggFunc):
6587    arg_types = {"this": True, "quantile": True}
6588
6589
6590class ApproxQuantile(Quantile):
6591    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
6592
6593
6594class Quarter(Func):
6595    pass
6596
6597
6598# https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/SQL-Functions-Expressions-and-Predicates/Arithmetic-Trigonometric-Hyperbolic-Operators/Functions/RANDOM/RANDOM-Function-Syntax
6599# teradata lower and upper bounds
6600class Rand(Func):
6601    _sql_names = ["RAND", "RANDOM"]
6602    arg_types = {"this": False, "lower": False, "upper": False}
6603
6604
6605class Randn(Func):
6606    arg_types = {"this": False}
6607
6608
6609class RangeN(Func):
6610    arg_types = {"this": True, "expressions": True, "each": False}
6611
6612
6613class ReadCSV(Func):
6614    _sql_names = ["READ_CSV"]
6615    is_var_len_args = True
6616    arg_types = {"this": True, "expressions": False}
6617
6618
6619class Reduce(Func):
6620    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
6621
6622
6623class RegexpExtract(Func):
6624    arg_types = {
6625        "this": True,
6626        "expression": True,
6627        "position": False,
6628        "occurrence": False,
6629        "parameters": False,
6630        "group": False,
6631    }
6632
6633
6634class RegexpExtractAll(Func):
6635    arg_types = {
6636        "this": True,
6637        "expression": True,
6638        "position": False,
6639        "occurrence": False,
6640        "parameters": False,
6641        "group": False,
6642    }
6643
6644
6645class RegexpReplace(Func):
6646    arg_types = {
6647        "this": True,
6648        "expression": True,
6649        "replacement": False,
6650        "position": False,
6651        "occurrence": False,
6652        "modifiers": False,
6653    }
6654
6655
6656class RegexpLike(Binary, Func):
6657    arg_types = {"this": True, "expression": True, "flag": False}
6658
6659
6660class RegexpILike(Binary, Func):
6661    arg_types = {"this": True, "expression": True, "flag": False}
6662
6663
6664# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
6665# limit is the number of times a pattern is applied
6666class RegexpSplit(Func):
6667    arg_types = {"this": True, "expression": True, "limit": False}
6668
6669
6670class Repeat(Func):
6671    arg_types = {"this": True, "times": True}
6672
6673
6674# Some dialects like Snowflake support two argument replace
6675class Replace(Func):
6676    arg_types = {"this": True, "expression": True, "replacement": False}
6677
6678
6679# https://learn.microsoft.com/en-us/sql/t-sql/functions/round-transact-sql?view=sql-server-ver16
6680# tsql third argument function == trunctaion if not 0
6681class Round(Func):
6682    arg_types = {"this": True, "decimals": False, "truncate": False}
6683
6684
6685class RowNumber(Func):
6686    arg_types = {"this": False}
6687
6688
6689class SafeDivide(Func):
6690    arg_types = {"this": True, "expression": True}
6691
6692
6693class SHA(Func):
6694    _sql_names = ["SHA", "SHA1"]
6695
6696
6697class SHA2(Func):
6698    _sql_names = ["SHA2"]
6699    arg_types = {"this": True, "length": False}
6700
6701
6702class Sign(Func):
6703    _sql_names = ["SIGN", "SIGNUM"]
6704
6705
6706class SortArray(Func):
6707    arg_types = {"this": True, "asc": False}
6708
6709
6710class Split(Func):
6711    arg_types = {"this": True, "expression": True, "limit": False}
6712
6713
6714# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split_part.html
6715class SplitPart(Func):
6716    arg_types = {"this": True, "delimiter": True, "part_index": True}
6717
6718
6719# Start may be omitted in the case of postgres
6720# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
6721class Substring(Func):
6722    _sql_names = ["SUBSTRING", "SUBSTR"]
6723    arg_types = {"this": True, "start": False, "length": False}
6724
6725
6726class StandardHash(Func):
6727    arg_types = {"this": True, "expression": False}
6728
6729
6730class StartsWith(Func):
6731    _sql_names = ["STARTS_WITH", "STARTSWITH"]
6732    arg_types = {"this": True, "expression": True}
6733
6734
6735class EndsWith(Func):
6736    _sql_names = ["ENDS_WITH", "ENDSWITH"]
6737    arg_types = {"this": True, "expression": True}
6738
6739
6740class StrPosition(Func):
6741    arg_types = {
6742        "this": True,
6743        "substr": True,
6744        "position": False,
6745        "occurrence": False,
6746    }
6747
6748
6749class StrToDate(Func):
6750    arg_types = {"this": True, "format": False, "safe": False}
6751
6752
6753class StrToTime(Func):
6754    arg_types = {"this": True, "format": True, "zone": False, "safe": False}
6755
6756
6757# Spark allows unix_timestamp()
6758# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
6759class StrToUnix(Func):
6760    arg_types = {"this": False, "format": False}
6761
6762
6763# https://prestodb.io/docs/current/functions/string.html
6764# https://spark.apache.org/docs/latest/api/sql/index.html#str_to_map
6765class StrToMap(Func):
6766    arg_types = {
6767        "this": True,
6768        "pair_delim": False,
6769        "key_value_delim": False,
6770        "duplicate_resolution_callback": False,
6771    }
6772
6773
6774class NumberToStr(Func):
6775    arg_types = {"this": True, "format": True, "culture": False}
6776
6777
6778class FromBase(Func):
6779    arg_types = {"this": True, "expression": True}
6780
6781
6782class Struct(Func):
6783    arg_types = {"expressions": False}
6784    is_var_len_args = True
6785
6786
6787class StructExtract(Func):
6788    arg_types = {"this": True, "expression": True}
6789
6790
6791# https://learn.microsoft.com/en-us/sql/t-sql/functions/stuff-transact-sql?view=sql-server-ver16
6792# https://docs.snowflake.com/en/sql-reference/functions/insert
6793class Stuff(Func):
6794    _sql_names = ["STUFF", "INSERT"]
6795    arg_types = {"this": True, "start": True, "length": True, "expression": True}
6796
6797
6798class Sum(AggFunc):
6799    pass
6800
6801
6802class Sqrt(Func):
6803    pass
6804
6805
6806class Stddev(AggFunc):
6807    _sql_names = ["STDDEV", "STDEV"]
6808
6809
6810class StddevPop(AggFunc):
6811    pass
6812
6813
6814class StddevSamp(AggFunc):
6815    pass
6816
6817
6818# https://cloud.google.com/bigquery/docs/reference/standard-sql/time_functions#time
6819class Time(Func):
6820    arg_types = {"this": False, "zone": False}
6821
6822
6823class TimeToStr(Func):
6824    arg_types = {"this": True, "format": True, "culture": False, "zone": False}
6825
6826
6827class TimeToTimeStr(Func):
6828    pass
6829
6830
6831class TimeToUnix(Func):
6832    pass
6833
6834
6835class TimeStrToDate(Func):
6836    pass
6837
6838
6839class TimeStrToTime(Func):
6840    arg_types = {"this": True, "zone": False}
6841
6842
6843class TimeStrToUnix(Func):
6844    pass
6845
6846
6847class Trim(Func):
6848    arg_types = {
6849        "this": True,
6850        "expression": False,
6851        "position": False,
6852        "collation": False,
6853    }
6854
6855
6856class TsOrDsAdd(Func, TimeUnit):
6857    # return_type is used to correctly cast the arguments of this expression when transpiling it
6858    arg_types = {"this": True, "expression": True, "unit": False, "return_type": False}
6859
6860    @property
6861    def return_type(self) -> DataType:
6862        return DataType.build(self.args.get("return_type") or DataType.Type.DATE)
6863
6864
6865class TsOrDsDiff(Func, TimeUnit):
6866    arg_types = {"this": True, "expression": True, "unit": False}
6867
6868
6869class TsOrDsToDateStr(Func):
6870    pass
6871
6872
6873class TsOrDsToDate(Func):
6874    arg_types = {"this": True, "format": False, "safe": False}
6875
6876
6877class TsOrDsToDatetime(Func):
6878    pass
6879
6880
6881class TsOrDsToTime(Func):
6882    arg_types = {"this": True, "format": False, "safe": False}
6883
6884
6885class TsOrDsToTimestamp(Func):
6886    pass
6887
6888
6889class TsOrDiToDi(Func):
6890    pass
6891
6892
6893class Unhex(Func):
6894    arg_types = {"this": True, "expression": False}
6895
6896
6897class Unicode(Func):
6898    pass
6899
6900
6901# https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions#unix_date
6902class UnixDate(Func):
6903    pass
6904
6905
6906class UnixToStr(Func):
6907    arg_types = {"this": True, "format": False}
6908
6909
6910# https://prestodb.io/docs/current/functions/datetime.html
6911# presto has weird zone/hours/minutes
6912class UnixToTime(Func):
6913    arg_types = {
6914        "this": True,
6915        "scale": False,
6916        "zone": False,
6917        "hours": False,
6918        "minutes": False,
6919        "format": False,
6920    }
6921
6922    SECONDS = Literal.number(0)
6923    DECIS = Literal.number(1)
6924    CENTIS = Literal.number(2)
6925    MILLIS = Literal.number(3)
6926    DECIMILLIS = Literal.number(4)
6927    CENTIMILLIS = Literal.number(5)
6928    MICROS = Literal.number(6)
6929    DECIMICROS = Literal.number(7)
6930    CENTIMICROS = Literal.number(8)
6931    NANOS = Literal.number(9)
6932
6933
6934class UnixToTimeStr(Func):
6935    pass
6936
6937
6938class UnixSeconds(Func):
6939    pass
6940
6941
6942class Uuid(Func):
6943    _sql_names = ["UUID", "GEN_RANDOM_UUID", "GENERATE_UUID", "UUID_STRING"]
6944
6945    arg_types = {"this": False, "name": False}
6946
6947
6948class TimestampFromParts(Func):
6949    _sql_names = ["TIMESTAMP_FROM_PARTS", "TIMESTAMPFROMPARTS"]
6950    arg_types = {
6951        "year": True,
6952        "month": True,
6953        "day": True,
6954        "hour": True,
6955        "min": True,
6956        "sec": True,
6957        "nano": False,
6958        "zone": False,
6959        "milli": False,
6960    }
6961
6962
6963class Upper(Func):
6964    _sql_names = ["UPPER", "UCASE"]
6965
6966
6967class Corr(Binary, AggFunc):
6968    pass
6969
6970
6971class Variance(AggFunc):
6972    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
6973
6974
6975class VariancePop(AggFunc):
6976    _sql_names = ["VARIANCE_POP", "VAR_POP"]
6977
6978
6979class CovarSamp(Binary, AggFunc):
6980    pass
6981
6982
6983class CovarPop(Binary, AggFunc):
6984    pass
6985
6986
6987class Week(Func):
6988    arg_types = {"this": True, "mode": False}
6989
6990
6991class XMLElement(Func):
6992    _sql_names = ["XMLELEMENT"]
6993    arg_types = {"this": True, "expressions": False}
6994
6995
6996class XMLTable(Func):
6997    arg_types = {
6998        "this": True,
6999        "namespaces": False,
7000        "passing": False,
7001        "columns": False,
7002        "by_ref": False,
7003    }
7004
7005
7006class XMLNamespace(Expression):
7007    pass
7008
7009
7010# https://learn.microsoft.com/en-us/sql/t-sql/queries/select-for-clause-transact-sql?view=sql-server-ver17#syntax
7011class XMLKeyValueOption(Expression):
7012    arg_types = {"this": True, "expression": False}
7013
7014
7015class Year(Func):
7016    pass
7017
7018
7019class Use(Expression):
7020    arg_types = {"this": False, "expressions": False, "kind": False}
7021
7022
7023class Merge(DML):
7024    arg_types = {
7025        "this": True,
7026        "using": True,
7027        "on": True,
7028        "whens": True,
7029        "with": False,
7030        "returning": False,
7031    }
7032
7033
7034class When(Expression):
7035    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
7036
7037
7038class Whens(Expression):
7039    """Wraps around one or more WHEN [NOT] MATCHED [...] clauses."""
7040
7041    arg_types = {"expressions": True}
7042
7043
7044# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
7045# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
7046class NextValueFor(Func):
7047    arg_types = {"this": True, "order": False}
7048
7049
7050# Refers to a trailing semi-colon. This is only used to preserve trailing comments
7051# select 1; -- my comment
7052class Semicolon(Expression):
7053    arg_types = {}
7054
7055
7056# BigQuery allows SELECT t FROM t and treats the projection as a struct value. This expression
7057# type is intended to be constructed by qualify so that we can properly annotate its type later
7058class TableColumn(Expression):
7059    pass
7060
7061
7062def _norm_arg(arg):
7063    return arg.lower() if type(arg) is str else arg
7064
7065
7066ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
7067FUNCTION_BY_NAME = {name: func for func in ALL_FUNCTIONS for name in func.sql_names()}
7068
7069JSON_PATH_PARTS = subclasses(__name__, JSONPathPart, (JSONPathPart,))
7070
7071PERCENTILES = (PercentileCont, PercentileDisc)
7072
7073
7074# Helpers
7075@t.overload
7076def maybe_parse(
7077    sql_or_expression: ExpOrStr,
7078    *,
7079    into: t.Type[E],
7080    dialect: DialectType = None,
7081    prefix: t.Optional[str] = None,
7082    copy: bool = False,
7083    **opts,
7084) -> E: ...
7085
7086
7087@t.overload
7088def maybe_parse(
7089    sql_or_expression: str | E,
7090    *,
7091    into: t.Optional[IntoType] = None,
7092    dialect: DialectType = None,
7093    prefix: t.Optional[str] = None,
7094    copy: bool = False,
7095    **opts,
7096) -> E: ...
7097
7098
7099def maybe_parse(
7100    sql_or_expression: ExpOrStr,
7101    *,
7102    into: t.Optional[IntoType] = None,
7103    dialect: DialectType = None,
7104    prefix: t.Optional[str] = None,
7105    copy: bool = False,
7106    **opts,
7107) -> Expression:
7108    """Gracefully handle a possible string or expression.
7109
7110    Example:
7111        >>> maybe_parse("1")
7112        Literal(this=1, is_string=False)
7113        >>> maybe_parse(to_identifier("x"))
7114        Identifier(this=x, quoted=False)
7115
7116    Args:
7117        sql_or_expression: the SQL code string or an expression
7118        into: the SQLGlot Expression to parse into
7119        dialect: the dialect used to parse the input expressions (in the case that an
7120            input expression is a SQL string).
7121        prefix: a string to prefix the sql with before it gets parsed
7122            (automatically includes a space)
7123        copy: whether to copy the expression.
7124        **opts: other options to use to parse the input expressions (again, in the case
7125            that an input expression is a SQL string).
7126
7127    Returns:
7128        Expression: the parsed or given expression.
7129    """
7130    if isinstance(sql_or_expression, Expression):
7131        if copy:
7132            return sql_or_expression.copy()
7133        return sql_or_expression
7134
7135    if sql_or_expression is None:
7136        raise ParseError("SQL cannot be None")
7137
7138    import sqlglot
7139
7140    sql = str(sql_or_expression)
7141    if prefix:
7142        sql = f"{prefix} {sql}"
7143
7144    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
7145
7146
7147@t.overload
7148def maybe_copy(instance: None, copy: bool = True) -> None: ...
7149
7150
7151@t.overload
7152def maybe_copy(instance: E, copy: bool = True) -> E: ...
7153
7154
7155def maybe_copy(instance, copy=True):
7156    return instance.copy() if copy and instance else instance
7157
7158
7159def _to_s(node: t.Any, verbose: bool = False, level: int = 0, repr_str: bool = False) -> str:
7160    """Generate a textual representation of an Expression tree"""
7161    indent = "\n" + ("  " * (level + 1))
7162    delim = f",{indent}"
7163
7164    if isinstance(node, Expression):
7165        args = {k: v for k, v in node.args.items() if (v is not None and v != []) or verbose}
7166
7167        if (node.type or verbose) and not isinstance(node, DataType):
7168            args["_type"] = node.type
7169        if node.comments or verbose:
7170            args["_comments"] = node.comments
7171
7172        if verbose:
7173            args["_id"] = id(node)
7174
7175        # Inline leaves for a more compact representation
7176        if node.is_leaf():
7177            indent = ""
7178            delim = ", "
7179
7180        repr_str = node.is_string or (isinstance(node, Identifier) and node.quoted)
7181        items = delim.join(
7182            [f"{k}={_to_s(v, verbose, level + 1, repr_str=repr_str)}" for k, v in args.items()]
7183        )
7184        return f"{node.__class__.__name__}({indent}{items})"
7185
7186    if isinstance(node, list):
7187        items = delim.join(_to_s(i, verbose, level + 1) for i in node)
7188        items = f"{indent}{items}" if items else ""
7189        return f"[{items}]"
7190
7191    # We use the representation of the string to avoid stripping out important whitespace
7192    if repr_str and isinstance(node, str):
7193        node = repr(node)
7194
7195    # Indent multiline strings to match the current level
7196    return indent.join(textwrap.dedent(str(node).strip("\n")).splitlines())
7197
7198
7199def _is_wrong_expression(expression, into):
7200    return isinstance(expression, Expression) and not isinstance(expression, into)
7201
7202
7203def _apply_builder(
7204    expression,
7205    instance,
7206    arg,
7207    copy=True,
7208    prefix=None,
7209    into=None,
7210    dialect=None,
7211    into_arg="this",
7212    **opts,
7213):
7214    if _is_wrong_expression(expression, into):
7215        expression = into(**{into_arg: expression})
7216    instance = maybe_copy(instance, copy)
7217    expression = maybe_parse(
7218        sql_or_expression=expression,
7219        prefix=prefix,
7220        into=into,
7221        dialect=dialect,
7222        **opts,
7223    )
7224    instance.set(arg, expression)
7225    return instance
7226
7227
7228def _apply_child_list_builder(
7229    *expressions,
7230    instance,
7231    arg,
7232    append=True,
7233    copy=True,
7234    prefix=None,
7235    into=None,
7236    dialect=None,
7237    properties=None,
7238    **opts,
7239):
7240    instance = maybe_copy(instance, copy)
7241    parsed = []
7242    properties = {} if properties is None else properties
7243
7244    for expression in expressions:
7245        if expression is not None:
7246            if _is_wrong_expression(expression, into):
7247                expression = into(expressions=[expression])
7248
7249            expression = maybe_parse(
7250                expression,
7251                into=into,
7252                dialect=dialect,
7253                prefix=prefix,
7254                **opts,
7255            )
7256            for k, v in expression.args.items():
7257                if k == "expressions":
7258                    parsed.extend(v)
7259                else:
7260                    properties[k] = v
7261
7262    existing = instance.args.get(arg)
7263    if append and existing:
7264        parsed = existing.expressions + parsed
7265
7266    child = into(expressions=parsed)
7267    for k, v in properties.items():
7268        child.set(k, v)
7269    instance.set(arg, child)
7270
7271    return instance
7272
7273
7274def _apply_list_builder(
7275    *expressions,
7276    instance,
7277    arg,
7278    append=True,
7279    copy=True,
7280    prefix=None,
7281    into=None,
7282    dialect=None,
7283    **opts,
7284):
7285    inst = maybe_copy(instance, copy)
7286
7287    expressions = [
7288        maybe_parse(
7289            sql_or_expression=expression,
7290            into=into,
7291            prefix=prefix,
7292            dialect=dialect,
7293            **opts,
7294        )
7295        for expression in expressions
7296        if expression is not None
7297    ]
7298
7299    existing_expressions = inst.args.get(arg)
7300    if append and existing_expressions:
7301        expressions = existing_expressions + expressions
7302
7303    inst.set(arg, expressions)
7304    return inst
7305
7306
7307def _apply_conjunction_builder(
7308    *expressions,
7309    instance,
7310    arg,
7311    into=None,
7312    append=True,
7313    copy=True,
7314    dialect=None,
7315    **opts,
7316):
7317    expressions = [exp for exp in expressions if exp is not None and exp != ""]
7318    if not expressions:
7319        return instance
7320
7321    inst = maybe_copy(instance, copy)
7322
7323    existing = inst.args.get(arg)
7324    if append and existing is not None:
7325        expressions = [existing.this if into else existing] + list(expressions)
7326
7327    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
7328
7329    inst.set(arg, into(this=node) if into else node)
7330    return inst
7331
7332
7333def _apply_cte_builder(
7334    instance: E,
7335    alias: ExpOrStr,
7336    as_: ExpOrStr,
7337    recursive: t.Optional[bool] = None,
7338    materialized: t.Optional[bool] = None,
7339    append: bool = True,
7340    dialect: DialectType = None,
7341    copy: bool = True,
7342    scalar: bool = False,
7343    **opts,
7344) -> E:
7345    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
7346    as_expression = maybe_parse(as_, dialect=dialect, copy=copy, **opts)
7347    if scalar and not isinstance(as_expression, Subquery):
7348        # scalar CTE must be wrapped in a subquery
7349        as_expression = Subquery(this=as_expression)
7350    cte = CTE(this=as_expression, alias=alias_expression, materialized=materialized, scalar=scalar)
7351    return _apply_child_list_builder(
7352        cte,
7353        instance=instance,
7354        arg="with",
7355        append=append,
7356        copy=copy,
7357        into=With,
7358        properties={"recursive": recursive or False},
7359    )
7360
7361
7362def _combine(
7363    expressions: t.Sequence[t.Optional[ExpOrStr]],
7364    operator: t.Type[Connector],
7365    dialect: DialectType = None,
7366    copy: bool = True,
7367    wrap: bool = True,
7368    **opts,
7369) -> Expression:
7370    conditions = [
7371        condition(expression, dialect=dialect, copy=copy, **opts)
7372        for expression in expressions
7373        if expression is not None
7374    ]
7375
7376    this, *rest = conditions
7377    if rest and wrap:
7378        this = _wrap(this, Connector)
7379    for expression in rest:
7380        this = operator(this=this, expression=_wrap(expression, Connector) if wrap else expression)
7381
7382    return this
7383
7384
7385@t.overload
7386def _wrap(expression: None, kind: t.Type[Expression]) -> None: ...
7387
7388
7389@t.overload
7390def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren: ...
7391
7392
7393def _wrap(expression: t.Optional[E], kind: t.Type[Expression]) -> t.Optional[E] | Paren:
7394    return Paren(this=expression) if isinstance(expression, kind) else expression
7395
7396
7397def _apply_set_operation(
7398    *expressions: ExpOrStr,
7399    set_operation: t.Type[S],
7400    distinct: bool = True,
7401    dialect: DialectType = None,
7402    copy: bool = True,
7403    **opts,
7404) -> S:
7405    return reduce(
7406        lambda x, y: set_operation(this=x, expression=y, distinct=distinct, **opts),
7407        (maybe_parse(e, dialect=dialect, copy=copy, **opts) for e in expressions),
7408    )
7409
7410
7411def union(
7412    *expressions: ExpOrStr,
7413    distinct: bool = True,
7414    dialect: DialectType = None,
7415    copy: bool = True,
7416    **opts,
7417) -> Union:
7418    """
7419    Initializes a syntax tree for the `UNION` operation.
7420
7421    Example:
7422        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
7423        'SELECT * FROM foo UNION SELECT * FROM bla'
7424
7425    Args:
7426        expressions: the SQL code strings, corresponding to the `UNION`'s operands.
7427            If `Expression` instances are passed, they will be used as-is.
7428        distinct: set the DISTINCT flag if and only if this is true.
7429        dialect: the dialect used to parse the input expression.
7430        copy: whether to copy the expression.
7431        opts: other options to use to parse the input expressions.
7432
7433    Returns:
7434        The new Union instance.
7435    """
7436    assert len(expressions) >= 2, "At least two expressions are required by `union`."
7437    return _apply_set_operation(
7438        *expressions, set_operation=Union, distinct=distinct, dialect=dialect, copy=copy, **opts
7439    )
7440
7441
7442def intersect(
7443    *expressions: ExpOrStr,
7444    distinct: bool = True,
7445    dialect: DialectType = None,
7446    copy: bool = True,
7447    **opts,
7448) -> Intersect:
7449    """
7450    Initializes a syntax tree for the `INTERSECT` operation.
7451
7452    Example:
7453        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
7454        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
7455
7456    Args:
7457        expressions: the SQL code strings, corresponding to the `INTERSECT`'s operands.
7458            If `Expression` instances are passed, they will be used as-is.
7459        distinct: set the DISTINCT flag if and only if this is true.
7460        dialect: the dialect used to parse the input expression.
7461        copy: whether to copy the expression.
7462        opts: other options to use to parse the input expressions.
7463
7464    Returns:
7465        The new Intersect instance.
7466    """
7467    assert len(expressions) >= 2, "At least two expressions are required by `intersect`."
7468    return _apply_set_operation(
7469        *expressions, set_operation=Intersect, distinct=distinct, dialect=dialect, copy=copy, **opts
7470    )
7471
7472
7473def except_(
7474    *expressions: ExpOrStr,
7475    distinct: bool = True,
7476    dialect: DialectType = None,
7477    copy: bool = True,
7478    **opts,
7479) -> Except:
7480    """
7481    Initializes a syntax tree for the `EXCEPT` operation.
7482
7483    Example:
7484        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
7485        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
7486
7487    Args:
7488        expressions: the SQL code strings, corresponding to the `EXCEPT`'s operands.
7489            If `Expression` instances are passed, they will be used as-is.
7490        distinct: set the DISTINCT flag if and only if this is true.
7491        dialect: the dialect used to parse the input expression.
7492        copy: whether to copy the expression.
7493        opts: other options to use to parse the input expressions.
7494
7495    Returns:
7496        The new Except instance.
7497    """
7498    assert len(expressions) >= 2, "At least two expressions are required by `except_`."
7499    return _apply_set_operation(
7500        *expressions, set_operation=Except, distinct=distinct, dialect=dialect, copy=copy, **opts
7501    )
7502
7503
7504def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7505    """
7506    Initializes a syntax tree from one or multiple SELECT expressions.
7507
7508    Example:
7509        >>> select("col1", "col2").from_("tbl").sql()
7510        'SELECT col1, col2 FROM tbl'
7511
7512    Args:
7513        *expressions: the SQL code string to parse as the expressions of a
7514            SELECT statement. If an Expression instance is passed, this is used as-is.
7515        dialect: the dialect used to parse the input expressions (in the case that an
7516            input expression is a SQL string).
7517        **opts: other options to use to parse the input expressions (again, in the case
7518            that an input expression is a SQL string).
7519
7520    Returns:
7521        Select: the syntax tree for the SELECT statement.
7522    """
7523    return Select().select(*expressions, dialect=dialect, **opts)
7524
7525
7526def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7527    """
7528    Initializes a syntax tree from a FROM expression.
7529
7530    Example:
7531        >>> from_("tbl").select("col1", "col2").sql()
7532        'SELECT col1, col2 FROM tbl'
7533
7534    Args:
7535        *expression: the SQL code string to parse as the FROM expressions of a
7536            SELECT statement. If an Expression instance is passed, this is used as-is.
7537        dialect: the dialect used to parse the input expression (in the case that the
7538            input expression is a SQL string).
7539        **opts: other options to use to parse the input expressions (again, in the case
7540            that the input expression is a SQL string).
7541
7542    Returns:
7543        Select: the syntax tree for the SELECT statement.
7544    """
7545    return Select().from_(expression, dialect=dialect, **opts)
7546
7547
7548def update(
7549    table: str | Table,
7550    properties: t.Optional[dict] = None,
7551    where: t.Optional[ExpOrStr] = None,
7552    from_: t.Optional[ExpOrStr] = None,
7553    with_: t.Optional[t.Dict[str, ExpOrStr]] = None,
7554    dialect: DialectType = None,
7555    **opts,
7556) -> Update:
7557    """
7558    Creates an update statement.
7559
7560    Example:
7561        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz_cte", where="baz_cte.id > 1 and my_table.id = baz_cte.id", with_={"baz_cte": "SELECT id FROM foo"}).sql()
7562        "WITH baz_cte AS (SELECT id FROM foo) UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz_cte WHERE baz_cte.id > 1 AND my_table.id = baz_cte.id"
7563
7564    Args:
7565        properties: dictionary of properties to SET which are
7566            auto converted to sql objects eg None -> NULL
7567        where: sql conditional parsed into a WHERE statement
7568        from_: sql statement parsed into a FROM statement
7569        with_: dictionary of CTE aliases / select statements to include in a WITH clause.
7570        dialect: the dialect used to parse the input expressions.
7571        **opts: other options to use to parse the input expressions.
7572
7573    Returns:
7574        Update: the syntax tree for the UPDATE statement.
7575    """
7576    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
7577    if properties:
7578        update_expr.set(
7579            "expressions",
7580            [
7581                EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
7582                for k, v in properties.items()
7583            ],
7584        )
7585    if from_:
7586        update_expr.set(
7587            "from",
7588            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
7589        )
7590    if isinstance(where, Condition):
7591        where = Where(this=where)
7592    if where:
7593        update_expr.set(
7594            "where",
7595            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
7596        )
7597    if with_:
7598        cte_list = [
7599            alias_(CTE(this=maybe_parse(qry, dialect=dialect, **opts)), alias, table=True)
7600            for alias, qry in with_.items()
7601        ]
7602        update_expr.set(
7603            "with",
7604            With(expressions=cte_list),
7605        )
7606    return update_expr
7607
7608
7609def delete(
7610    table: ExpOrStr,
7611    where: t.Optional[ExpOrStr] = None,
7612    returning: t.Optional[ExpOrStr] = None,
7613    dialect: DialectType = None,
7614    **opts,
7615) -> Delete:
7616    """
7617    Builds a delete statement.
7618
7619    Example:
7620        >>> delete("my_table", where="id > 1").sql()
7621        'DELETE FROM my_table WHERE id > 1'
7622
7623    Args:
7624        where: sql conditional parsed into a WHERE statement
7625        returning: sql conditional parsed into a RETURNING statement
7626        dialect: the dialect used to parse the input expressions.
7627        **opts: other options to use to parse the input expressions.
7628
7629    Returns:
7630        Delete: the syntax tree for the DELETE statement.
7631    """
7632    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
7633    if where:
7634        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
7635    if returning:
7636        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
7637    return delete_expr
7638
7639
7640def insert(
7641    expression: ExpOrStr,
7642    into: ExpOrStr,
7643    columns: t.Optional[t.Sequence[str | Identifier]] = None,
7644    overwrite: t.Optional[bool] = None,
7645    returning: t.Optional[ExpOrStr] = None,
7646    dialect: DialectType = None,
7647    copy: bool = True,
7648    **opts,
7649) -> Insert:
7650    """
7651    Builds an INSERT statement.
7652
7653    Example:
7654        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
7655        'INSERT INTO tbl VALUES (1, 2, 3)'
7656
7657    Args:
7658        expression: the sql string or expression of the INSERT statement
7659        into: the tbl to insert data to.
7660        columns: optionally the table's column names.
7661        overwrite: whether to INSERT OVERWRITE or not.
7662        returning: sql conditional parsed into a RETURNING statement
7663        dialect: the dialect used to parse the input expressions.
7664        copy: whether to copy the expression.
7665        **opts: other options to use to parse the input expressions.
7666
7667    Returns:
7668        Insert: the syntax tree for the INSERT statement.
7669    """
7670    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
7671    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
7672
7673    if columns:
7674        this = Schema(this=this, expressions=[to_identifier(c, copy=copy) for c in columns])
7675
7676    insert = Insert(this=this, expression=expr, overwrite=overwrite)
7677
7678    if returning:
7679        insert = insert.returning(returning, dialect=dialect, copy=False, **opts)
7680
7681    return insert
7682
7683
7684def merge(
7685    *when_exprs: ExpOrStr,
7686    into: ExpOrStr,
7687    using: ExpOrStr,
7688    on: ExpOrStr,
7689    returning: t.Optional[ExpOrStr] = None,
7690    dialect: DialectType = None,
7691    copy: bool = True,
7692    **opts,
7693) -> Merge:
7694    """
7695    Builds a MERGE statement.
7696
7697    Example:
7698        >>> merge("WHEN MATCHED THEN UPDATE SET col1 = source_table.col1",
7699        ...       "WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)",
7700        ...       into="my_table",
7701        ...       using="source_table",
7702        ...       on="my_table.id = source_table.id").sql()
7703        'MERGE INTO my_table USING source_table ON my_table.id = source_table.id WHEN MATCHED THEN UPDATE SET col1 = source_table.col1 WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)'
7704
7705    Args:
7706        *when_exprs: The WHEN clauses specifying actions for matched and unmatched rows.
7707        into: The target table to merge data into.
7708        using: The source table to merge data from.
7709        on: The join condition for the merge.
7710        returning: The columns to return from the merge.
7711        dialect: The dialect used to parse the input expressions.
7712        copy: Whether to copy the expression.
7713        **opts: Other options to use to parse the input expressions.
7714
7715    Returns:
7716        Merge: The syntax tree for the MERGE statement.
7717    """
7718    expressions: t.List[Expression] = []
7719    for when_expr in when_exprs:
7720        expression = maybe_parse(when_expr, dialect=dialect, copy=copy, into=Whens, **opts)
7721        expressions.extend([expression] if isinstance(expression, When) else expression.expressions)
7722
7723    merge = Merge(
7724        this=maybe_parse(into, dialect=dialect, copy=copy, **opts),
7725        using=maybe_parse(using, dialect=dialect, copy=copy, **opts),
7726        on=maybe_parse(on, dialect=dialect, copy=copy, **opts),
7727        whens=Whens(expressions=expressions),
7728    )
7729    if returning:
7730        merge = merge.returning(returning, dialect=dialect, copy=False, **opts)
7731
7732    return merge
7733
7734
7735def condition(
7736    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
7737) -> Condition:
7738    """
7739    Initialize a logical condition expression.
7740
7741    Example:
7742        >>> condition("x=1").sql()
7743        'x = 1'
7744
7745        This is helpful for composing larger logical syntax trees:
7746        >>> where = condition("x=1")
7747        >>> where = where.and_("y=1")
7748        >>> Select().from_("tbl").select("*").where(where).sql()
7749        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
7750
7751    Args:
7752        *expression: the SQL code string to parse.
7753            If an Expression instance is passed, this is used as-is.
7754        dialect: the dialect used to parse the input expression (in the case that the
7755            input expression is a SQL string).
7756        copy: Whether to copy `expression` (only applies to expressions).
7757        **opts: other options to use to parse the input expressions (again, in the case
7758            that the input expression is a SQL string).
7759
7760    Returns:
7761        The new Condition instance
7762    """
7763    return maybe_parse(
7764        expression,
7765        into=Condition,
7766        dialect=dialect,
7767        copy=copy,
7768        **opts,
7769    )
7770
7771
7772def and_(
7773    *expressions: t.Optional[ExpOrStr],
7774    dialect: DialectType = None,
7775    copy: bool = True,
7776    wrap: bool = True,
7777    **opts,
7778) -> Condition:
7779    """
7780    Combine multiple conditions with an AND logical operator.
7781
7782    Example:
7783        >>> and_("x=1", and_("y=1", "z=1")).sql()
7784        'x = 1 AND (y = 1 AND z = 1)'
7785
7786    Args:
7787        *expressions: the SQL code strings to parse.
7788            If an Expression instance is passed, this is used as-is.
7789        dialect: the dialect used to parse the input expression.
7790        copy: whether to copy `expressions` (only applies to Expressions).
7791        wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
7792            precedence issues, but can be turned off when the produced AST is too deep and
7793            causes recursion-related issues.
7794        **opts: other options to use to parse the input expressions.
7795
7796    Returns:
7797        The new condition
7798    """
7799    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, wrap=wrap, **opts))
7800
7801
7802def or_(
7803    *expressions: t.Optional[ExpOrStr],
7804    dialect: DialectType = None,
7805    copy: bool = True,
7806    wrap: bool = True,
7807    **opts,
7808) -> Condition:
7809    """
7810    Combine multiple conditions with an OR logical operator.
7811
7812    Example:
7813        >>> or_("x=1", or_("y=1", "z=1")).sql()
7814        'x = 1 OR (y = 1 OR z = 1)'
7815
7816    Args:
7817        *expressions: the SQL code strings to parse.
7818            If an Expression instance is passed, this is used as-is.
7819        dialect: the dialect used to parse the input expression.
7820        copy: whether to copy `expressions` (only applies to Expressions).
7821        wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
7822            precedence issues, but can be turned off when the produced AST is too deep and
7823            causes recursion-related issues.
7824        **opts: other options to use to parse the input expressions.
7825
7826    Returns:
7827        The new condition
7828    """
7829    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, wrap=wrap, **opts))
7830
7831
7832def xor(
7833    *expressions: t.Optional[ExpOrStr],
7834    dialect: DialectType = None,
7835    copy: bool = True,
7836    wrap: bool = True,
7837    **opts,
7838) -> Condition:
7839    """
7840    Combine multiple conditions with an XOR logical operator.
7841
7842    Example:
7843        >>> xor("x=1", xor("y=1", "z=1")).sql()
7844        'x = 1 XOR (y = 1 XOR z = 1)'
7845
7846    Args:
7847        *expressions: the SQL code strings to parse.
7848            If an Expression instance is passed, this is used as-is.
7849        dialect: the dialect used to parse the input expression.
7850        copy: whether to copy `expressions` (only applies to Expressions).
7851        wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
7852            precedence issues, but can be turned off when the produced AST is too deep and
7853            causes recursion-related issues.
7854        **opts: other options to use to parse the input expressions.
7855
7856    Returns:
7857        The new condition
7858    """
7859    return t.cast(Condition, _combine(expressions, Xor, dialect, copy=copy, wrap=wrap, **opts))
7860
7861
7862def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
7863    """
7864    Wrap a condition with a NOT operator.
7865
7866    Example:
7867        >>> not_("this_suit='black'").sql()
7868        "NOT this_suit = 'black'"
7869
7870    Args:
7871        expression: the SQL code string to parse.
7872            If an Expression instance is passed, this is used as-is.
7873        dialect: the dialect used to parse the input expression.
7874        copy: whether to copy the expression or not.
7875        **opts: other options to use to parse the input expressions.
7876
7877    Returns:
7878        The new condition.
7879    """
7880    this = condition(
7881        expression,
7882        dialect=dialect,
7883        copy=copy,
7884        **opts,
7885    )
7886    return Not(this=_wrap(this, Connector))
7887
7888
7889def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
7890    """
7891    Wrap an expression in parentheses.
7892
7893    Example:
7894        >>> paren("5 + 3").sql()
7895        '(5 + 3)'
7896
7897    Args:
7898        expression: the SQL code string to parse.
7899            If an Expression instance is passed, this is used as-is.
7900        copy: whether to copy the expression or not.
7901
7902    Returns:
7903        The wrapped expression.
7904    """
7905    return Paren(this=maybe_parse(expression, copy=copy))
7906
7907
7908SAFE_IDENTIFIER_RE: t.Pattern[str] = re.compile(r"^[_a-zA-Z][\w]*$")
7909
7910
7911@t.overload
7912def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None: ...
7913
7914
7915@t.overload
7916def to_identifier(
7917    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
7918) -> Identifier: ...
7919
7920
7921def to_identifier(name, quoted=None, copy=True):
7922    """Builds an identifier.
7923
7924    Args:
7925        name: The name to turn into an identifier.
7926        quoted: Whether to force quote the identifier.
7927        copy: Whether to copy name if it's an Identifier.
7928
7929    Returns:
7930        The identifier ast node.
7931    """
7932
7933    if name is None:
7934        return None
7935
7936    if isinstance(name, Identifier):
7937        identifier = maybe_copy(name, copy)
7938    elif isinstance(name, str):
7939        identifier = Identifier(
7940            this=name,
7941            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
7942        )
7943    else:
7944        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
7945    return identifier
7946
7947
7948def parse_identifier(name: str | Identifier, dialect: DialectType = None) -> Identifier:
7949    """
7950    Parses a given string into an identifier.
7951
7952    Args:
7953        name: The name to parse into an identifier.
7954        dialect: The dialect to parse against.
7955
7956    Returns:
7957        The identifier ast node.
7958    """
7959    try:
7960        expression = maybe_parse(name, dialect=dialect, into=Identifier)
7961    except (ParseError, TokenError):
7962        expression = to_identifier(name)
7963
7964    return expression
7965
7966
7967INTERVAL_STRING_RE = re.compile(r"\s*(-?[0-9]+(?:\.[0-9]+)?)\s*([a-zA-Z]+)\s*")
7968
7969
7970def to_interval(interval: str | Literal) -> Interval:
7971    """Builds an interval expression from a string like '1 day' or '5 months'."""
7972    if isinstance(interval, Literal):
7973        if not interval.is_string:
7974            raise ValueError("Invalid interval string.")
7975
7976        interval = interval.this
7977
7978    interval = maybe_parse(f"INTERVAL {interval}")
7979    assert isinstance(interval, Interval)
7980    return interval
7981
7982
7983def to_table(
7984    sql_path: str | Table, dialect: DialectType = None, copy: bool = True, **kwargs
7985) -> Table:
7986    """
7987    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
7988    If a table is passed in then that table is returned.
7989
7990    Args:
7991        sql_path: a `[catalog].[schema].[table]` string.
7992        dialect: the source dialect according to which the table name will be parsed.
7993        copy: Whether to copy a table if it is passed in.
7994        kwargs: the kwargs to instantiate the resulting `Table` expression with.
7995
7996    Returns:
7997        A table expression.
7998    """
7999    if isinstance(sql_path, Table):
8000        return maybe_copy(sql_path, copy=copy)
8001
8002    try:
8003        table = maybe_parse(sql_path, into=Table, dialect=dialect)
8004    except ParseError:
8005        catalog, db, this = split_num_words(sql_path, ".", 3)
8006
8007        if not this:
8008            raise
8009
8010        table = table_(this, db=db, catalog=catalog)
8011
8012    for k, v in kwargs.items():
8013        table.set(k, v)
8014
8015    return table
8016
8017
8018def to_column(
8019    sql_path: str | Column,
8020    quoted: t.Optional[bool] = None,
8021    dialect: DialectType = None,
8022    copy: bool = True,
8023    **kwargs,
8024) -> Column:
8025    """
8026    Create a column from a `[table].[column]` sql path. Table is optional.
8027    If a column is passed in then that column is returned.
8028
8029    Args:
8030        sql_path: a `[table].[column]` string.
8031        quoted: Whether or not to force quote identifiers.
8032        dialect: the source dialect according to which the column name will be parsed.
8033        copy: Whether to copy a column if it is passed in.
8034        kwargs: the kwargs to instantiate the resulting `Column` expression with.
8035
8036    Returns:
8037        A column expression.
8038    """
8039    if isinstance(sql_path, Column):
8040        return maybe_copy(sql_path, copy=copy)
8041
8042    try:
8043        col = maybe_parse(sql_path, into=Column, dialect=dialect)
8044    except ParseError:
8045        return column(*reversed(sql_path.split(".")), quoted=quoted, **kwargs)
8046
8047    for k, v in kwargs.items():
8048        col.set(k, v)
8049
8050    if quoted:
8051        for i in col.find_all(Identifier):
8052            i.set("quoted", True)
8053
8054    return col
8055
8056
8057def alias_(
8058    expression: ExpOrStr,
8059    alias: t.Optional[str | Identifier],
8060    table: bool | t.Sequence[str | Identifier] = False,
8061    quoted: t.Optional[bool] = None,
8062    dialect: DialectType = None,
8063    copy: bool = True,
8064    **opts,
8065):
8066    """Create an Alias expression.
8067
8068    Example:
8069        >>> alias_('foo', 'bar').sql()
8070        'foo AS bar'
8071
8072        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
8073        '(SELECT 1, 2) AS bar(a, b)'
8074
8075    Args:
8076        expression: the SQL code strings to parse.
8077            If an Expression instance is passed, this is used as-is.
8078        alias: the alias name to use. If the name has
8079            special characters it is quoted.
8080        table: Whether to create a table alias, can also be a list of columns.
8081        quoted: whether to quote the alias
8082        dialect: the dialect used to parse the input expression.
8083        copy: Whether to copy the expression.
8084        **opts: other options to use to parse the input expressions.
8085
8086    Returns:
8087        Alias: the aliased expression
8088    """
8089    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
8090    alias = to_identifier(alias, quoted=quoted)
8091
8092    if table:
8093        table_alias = TableAlias(this=alias)
8094        exp.set("alias", table_alias)
8095
8096        if not isinstance(table, bool):
8097            for column in table:
8098                table_alias.append("columns", to_identifier(column, quoted=quoted))
8099
8100        return exp
8101
8102    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
8103    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
8104    # for the complete Window expression.
8105    #
8106    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
8107
8108    if "alias" in exp.arg_types and not isinstance(exp, Window):
8109        exp.set("alias", alias)
8110        return exp
8111    return Alias(this=exp, alias=alias)
8112
8113
8114def subquery(
8115    expression: ExpOrStr,
8116    alias: t.Optional[Identifier | str] = None,
8117    dialect: DialectType = None,
8118    **opts,
8119) -> Select:
8120    """
8121    Build a subquery expression that's selected from.
8122
8123    Example:
8124        >>> subquery('select x from tbl', 'bar').select('x').sql()
8125        'SELECT x FROM (SELECT x FROM tbl) AS bar'
8126
8127    Args:
8128        expression: the SQL code strings to parse.
8129            If an Expression instance is passed, this is used as-is.
8130        alias: the alias name to use.
8131        dialect: the dialect used to parse the input expression.
8132        **opts: other options to use to parse the input expressions.
8133
8134    Returns:
8135        A new Select instance with the subquery expression included.
8136    """
8137
8138    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias, **opts)
8139    return Select().from_(expression, dialect=dialect, **opts)
8140
8141
8142@t.overload
8143def column(
8144    col: str | Identifier,
8145    table: t.Optional[str | Identifier] = None,
8146    db: t.Optional[str | Identifier] = None,
8147    catalog: t.Optional[str | Identifier] = None,
8148    *,
8149    fields: t.Collection[t.Union[str, Identifier]],
8150    quoted: t.Optional[bool] = None,
8151    copy: bool = True,
8152) -> Dot:
8153    pass
8154
8155
8156@t.overload
8157def column(
8158    col: str | Identifier | Star,
8159    table: t.Optional[str | Identifier] = None,
8160    db: t.Optional[str | Identifier] = None,
8161    catalog: t.Optional[str | Identifier] = None,
8162    *,
8163    fields: Lit[None] = None,
8164    quoted: t.Optional[bool] = None,
8165    copy: bool = True,
8166) -> Column:
8167    pass
8168
8169
8170def column(
8171    col,
8172    table=None,
8173    db=None,
8174    catalog=None,
8175    *,
8176    fields=None,
8177    quoted=None,
8178    copy=True,
8179):
8180    """
8181    Build a Column.
8182
8183    Args:
8184        col: Column name.
8185        table: Table name.
8186        db: Database name.
8187        catalog: Catalog name.
8188        fields: Additional fields using dots.
8189        quoted: Whether to force quotes on the column's identifiers.
8190        copy: Whether to copy identifiers if passed in.
8191
8192    Returns:
8193        The new Column instance.
8194    """
8195    if not isinstance(col, Star):
8196        col = to_identifier(col, quoted=quoted, copy=copy)
8197
8198    this = Column(
8199        this=col,
8200        table=to_identifier(table, quoted=quoted, copy=copy),
8201        db=to_identifier(db, quoted=quoted, copy=copy),
8202        catalog=to_identifier(catalog, quoted=quoted, copy=copy),
8203    )
8204
8205    if fields:
8206        this = Dot.build(
8207            (this, *(to_identifier(field, quoted=quoted, copy=copy) for field in fields))
8208        )
8209    return this
8210
8211
8212def cast(
8213    expression: ExpOrStr, to: DATA_TYPE, copy: bool = True, dialect: DialectType = None, **opts
8214) -> Cast:
8215    """Cast an expression to a data type.
8216
8217    Example:
8218        >>> cast('x + 1', 'int').sql()
8219        'CAST(x + 1 AS INT)'
8220
8221    Args:
8222        expression: The expression to cast.
8223        to: The datatype to cast to.
8224        copy: Whether to copy the supplied expressions.
8225        dialect: The target dialect. This is used to prevent a re-cast in the following scenario:
8226            - The expression to be cast is already a exp.Cast expression
8227            - The existing cast is to a type that is logically equivalent to new type
8228
8229            For example, if :expression='CAST(x as DATETIME)' and :to=Type.TIMESTAMP,
8230            but in the target dialect DATETIME is mapped to TIMESTAMP, then we will NOT return `CAST(x (as DATETIME) as TIMESTAMP)`
8231            and instead just return the original expression `CAST(x as DATETIME)`.
8232
8233            This is to prevent it being output as a double cast `CAST(x (as TIMESTAMP) as TIMESTAMP)` once the DATETIME -> TIMESTAMP
8234            mapping is applied in the target dialect generator.
8235
8236    Returns:
8237        The new Cast instance.
8238    """
8239    expr = maybe_parse(expression, copy=copy, dialect=dialect, **opts)
8240    data_type = DataType.build(to, copy=copy, dialect=dialect, **opts)
8241
8242    # dont re-cast if the expression is already a cast to the correct type
8243    if isinstance(expr, Cast):
8244        from sqlglot.dialects.dialect import Dialect
8245
8246        target_dialect = Dialect.get_or_raise(dialect)
8247        type_mapping = target_dialect.generator_class.TYPE_MAPPING
8248
8249        existing_cast_type: DataType.Type = expr.to.this
8250        new_cast_type: DataType.Type = data_type.this
8251        types_are_equivalent = type_mapping.get(
8252            existing_cast_type, existing_cast_type.value
8253        ) == type_mapping.get(new_cast_type, new_cast_type.value)
8254
8255        if expr.is_type(data_type) or types_are_equivalent:
8256            return expr
8257
8258    expr = Cast(this=expr, to=data_type)
8259    expr.type = data_type
8260
8261    return expr
8262
8263
8264def table_(
8265    table: Identifier | str,
8266    db: t.Optional[Identifier | str] = None,
8267    catalog: t.Optional[Identifier | str] = None,
8268    quoted: t.Optional[bool] = None,
8269    alias: t.Optional[Identifier | str] = None,
8270) -> Table:
8271    """Build a Table.
8272
8273    Args:
8274        table: Table name.
8275        db: Database name.
8276        catalog: Catalog name.
8277        quote: Whether to force quotes on the table's identifiers.
8278        alias: Table's alias.
8279
8280    Returns:
8281        The new Table instance.
8282    """
8283    return Table(
8284        this=to_identifier(table, quoted=quoted) if table else None,
8285        db=to_identifier(db, quoted=quoted) if db else None,
8286        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
8287        alias=TableAlias(this=to_identifier(alias)) if alias else None,
8288    )
8289
8290
8291def values(
8292    values: t.Iterable[t.Tuple[t.Any, ...]],
8293    alias: t.Optional[str] = None,
8294    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
8295) -> Values:
8296    """Build VALUES statement.
8297
8298    Example:
8299        >>> values([(1, '2')]).sql()
8300        "VALUES (1, '2')"
8301
8302    Args:
8303        values: values statements that will be converted to SQL
8304        alias: optional alias
8305        columns: Optional list of ordered column names or ordered dictionary of column names to types.
8306         If either are provided then an alias is also required.
8307
8308    Returns:
8309        Values: the Values expression object
8310    """
8311    if columns and not alias:
8312        raise ValueError("Alias is required when providing columns")
8313
8314    return Values(
8315        expressions=[convert(tup) for tup in values],
8316        alias=(
8317            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
8318            if columns
8319            else (TableAlias(this=to_identifier(alias)) if alias else None)
8320        ),
8321    )
8322
8323
8324def var(name: t.Optional[ExpOrStr]) -> Var:
8325    """Build a SQL variable.
8326
8327    Example:
8328        >>> repr(var('x'))
8329        'Var(this=x)'
8330
8331        >>> repr(var(column('x', table='y')))
8332        'Var(this=x)'
8333
8334    Args:
8335        name: The name of the var or an expression who's name will become the var.
8336
8337    Returns:
8338        The new variable node.
8339    """
8340    if not name:
8341        raise ValueError("Cannot convert empty name into var.")
8342
8343    if isinstance(name, Expression):
8344        name = name.name
8345    return Var(this=name)
8346
8347
8348def rename_table(
8349    old_name: str | Table,
8350    new_name: str | Table,
8351    dialect: DialectType = None,
8352) -> Alter:
8353    """Build ALTER TABLE... RENAME... expression
8354
8355    Args:
8356        old_name: The old name of the table
8357        new_name: The new name of the table
8358        dialect: The dialect to parse the table.
8359
8360    Returns:
8361        Alter table expression
8362    """
8363    old_table = to_table(old_name, dialect=dialect)
8364    new_table = to_table(new_name, dialect=dialect)
8365    return Alter(
8366        this=old_table,
8367        kind="TABLE",
8368        actions=[
8369            AlterRename(this=new_table),
8370        ],
8371    )
8372
8373
8374def rename_column(
8375    table_name: str | Table,
8376    old_column_name: str | Column,
8377    new_column_name: str | Column,
8378    exists: t.Optional[bool] = None,
8379    dialect: DialectType = None,
8380) -> Alter:
8381    """Build ALTER TABLE... RENAME COLUMN... expression
8382
8383    Args:
8384        table_name: Name of the table
8385        old_column: The old name of the column
8386        new_column: The new name of the column
8387        exists: Whether to add the `IF EXISTS` clause
8388        dialect: The dialect to parse the table/column.
8389
8390    Returns:
8391        Alter table expression
8392    """
8393    table = to_table(table_name, dialect=dialect)
8394    old_column = to_column(old_column_name, dialect=dialect)
8395    new_column = to_column(new_column_name, dialect=dialect)
8396    return Alter(
8397        this=table,
8398        kind="TABLE",
8399        actions=[
8400            RenameColumn(this=old_column, to=new_column, exists=exists),
8401        ],
8402    )
8403
8404
8405def convert(value: t.Any, copy: bool = False) -> Expression:
8406    """Convert a python value into an expression object.
8407
8408    Raises an error if a conversion is not possible.
8409
8410    Args:
8411        value: A python object.
8412        copy: Whether to copy `value` (only applies to Expressions and collections).
8413
8414    Returns:
8415        The equivalent expression object.
8416    """
8417    if isinstance(value, Expression):
8418        return maybe_copy(value, copy)
8419    if isinstance(value, str):
8420        return Literal.string(value)
8421    if isinstance(value, bool):
8422        return Boolean(this=value)
8423    if value is None or (isinstance(value, float) and math.isnan(value)):
8424        return null()
8425    if isinstance(value, numbers.Number):
8426        return Literal.number(value)
8427    if isinstance(value, bytes):
8428        return HexString(this=value.hex())
8429    if isinstance(value, datetime.datetime):
8430        datetime_literal = Literal.string(value.isoformat(sep=" "))
8431
8432        tz = None
8433        if value.tzinfo:
8434            # this works for zoneinfo.ZoneInfo, pytz.timezone and datetime.datetime.utc to return IANA timezone names like "America/Los_Angeles"
8435            # instead of abbreviations like "PDT". This is for consistency with other timezone handling functions in SQLGlot
8436            tz = Literal.string(str(value.tzinfo))
8437
8438        return TimeStrToTime(this=datetime_literal, zone=tz)
8439    if isinstance(value, datetime.date):
8440        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
8441        return DateStrToDate(this=date_literal)
8442    if isinstance(value, tuple):
8443        if hasattr(value, "_fields"):
8444            return Struct(
8445                expressions=[
8446                    PropertyEQ(
8447                        this=to_identifier(k), expression=convert(getattr(value, k), copy=copy)
8448                    )
8449                    for k in value._fields
8450                ]
8451            )
8452        return Tuple(expressions=[convert(v, copy=copy) for v in value])
8453    if isinstance(value, list):
8454        return Array(expressions=[convert(v, copy=copy) for v in value])
8455    if isinstance(value, dict):
8456        return Map(
8457            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
8458            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
8459        )
8460    if hasattr(value, "__dict__"):
8461        return Struct(
8462            expressions=[
8463                PropertyEQ(this=to_identifier(k), expression=convert(v, copy=copy))
8464                for k, v in value.__dict__.items()
8465            ]
8466        )
8467    raise ValueError(f"Cannot convert {value}")
8468
8469
8470def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
8471    """
8472    Replace children of an expression with the result of a lambda fun(child) -> exp.
8473    """
8474    for k, v in tuple(expression.args.items()):
8475        is_list_arg = type(v) is list
8476
8477        child_nodes = v if is_list_arg else [v]
8478        new_child_nodes = []
8479
8480        for cn in child_nodes:
8481            if isinstance(cn, Expression):
8482                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
8483                    new_child_nodes.append(child_node)
8484            else:
8485                new_child_nodes.append(cn)
8486
8487        expression.set(k, new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0))
8488
8489
8490def replace_tree(
8491    expression: Expression,
8492    fun: t.Callable,
8493    prune: t.Optional[t.Callable[[Expression], bool]] = None,
8494) -> Expression:
8495    """
8496    Replace an entire tree with the result of function calls on each node.
8497
8498    This will be traversed in reverse dfs, so leaves first.
8499    If new nodes are created as a result of function calls, they will also be traversed.
8500    """
8501    stack = list(expression.dfs(prune=prune))
8502
8503    while stack:
8504        node = stack.pop()
8505        new_node = fun(node)
8506
8507        if new_node is not node:
8508            node.replace(new_node)
8509
8510            if isinstance(new_node, Expression):
8511                stack.append(new_node)
8512
8513    return new_node
8514
8515
8516def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
8517    """
8518    Return all table names referenced through columns in an expression.
8519
8520    Example:
8521        >>> import sqlglot
8522        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
8523        ['a', 'c']
8524
8525    Args:
8526        expression: expression to find table names.
8527        exclude: a table name to exclude
8528
8529    Returns:
8530        A list of unique names.
8531    """
8532    return {
8533        table
8534        for table in (column.table for column in expression.find_all(Column))
8535        if table and table != exclude
8536    }
8537
8538
8539def table_name(table: Table | str, dialect: DialectType = None, identify: bool = False) -> str:
8540    """Get the full name of a table as a string.
8541
8542    Args:
8543        table: Table expression node or string.
8544        dialect: The dialect to generate the table name for.
8545        identify: Determines when an identifier should be quoted. Possible values are:
8546            False (default): Never quote, except in cases where it's mandatory by the dialect.
8547            True: Always quote.
8548
8549    Examples:
8550        >>> from sqlglot import exp, parse_one
8551        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
8552        'a.b.c'
8553
8554    Returns:
8555        The table name.
8556    """
8557
8558    table = maybe_parse(table, into=Table, dialect=dialect)
8559
8560    if not table:
8561        raise ValueError(f"Cannot parse {table}")
8562
8563    return ".".join(
8564        (
8565            part.sql(dialect=dialect, identify=True, copy=False, comments=False)
8566            if identify or not SAFE_IDENTIFIER_RE.match(part.name)
8567            else part.name
8568        )
8569        for part in table.parts
8570    )
8571
8572
8573def normalize_table_name(table: str | Table, dialect: DialectType = None, copy: bool = True) -> str:
8574    """Returns a case normalized table name without quotes.
8575
8576    Args:
8577        table: the table to normalize
8578        dialect: the dialect to use for normalization rules
8579        copy: whether to copy the expression.
8580
8581    Examples:
8582        >>> normalize_table_name("`A-B`.c", dialect="bigquery")
8583        'A-B.c'
8584    """
8585    from sqlglot.optimizer.normalize_identifiers import normalize_identifiers
8586
8587    return ".".join(
8588        p.name
8589        for p in normalize_identifiers(
8590            to_table(table, dialect=dialect, copy=copy), dialect=dialect
8591        ).parts
8592    )
8593
8594
8595def replace_tables(
8596    expression: E, mapping: t.Dict[str, str], dialect: DialectType = None, copy: bool = True
8597) -> E:
8598    """Replace all tables in expression according to the mapping.
8599
8600    Args:
8601        expression: expression node to be transformed and replaced.
8602        mapping: mapping of table names.
8603        dialect: the dialect of the mapping table
8604        copy: whether to copy the expression.
8605
8606    Examples:
8607        >>> from sqlglot import exp, parse_one
8608        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
8609        'SELECT * FROM c /* a.b */'
8610
8611    Returns:
8612        The mapped expression.
8613    """
8614
8615    mapping = {normalize_table_name(k, dialect=dialect): v for k, v in mapping.items()}
8616
8617    def _replace_tables(node: Expression) -> Expression:
8618        if isinstance(node, Table) and node.meta.get("replace") is not False:
8619            original = normalize_table_name(node, dialect=dialect)
8620            new_name = mapping.get(original)
8621
8622            if new_name:
8623                table = to_table(
8624                    new_name,
8625                    **{k: v for k, v in node.args.items() if k not in TABLE_PARTS},
8626                    dialect=dialect,
8627                )
8628                table.add_comments([original])
8629                return table
8630        return node
8631
8632    return expression.transform(_replace_tables, copy=copy)  # type: ignore
8633
8634
8635def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
8636    """Replace placeholders in an expression.
8637
8638    Args:
8639        expression: expression node to be transformed and replaced.
8640        args: positional names that will substitute unnamed placeholders in the given order.
8641        kwargs: keyword arguments that will substitute named placeholders.
8642
8643    Examples:
8644        >>> from sqlglot import exp, parse_one
8645        >>> replace_placeholders(
8646        ...     parse_one("select * from :tbl where ? = ?"),
8647        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
8648        ... ).sql()
8649        "SELECT * FROM foo WHERE str_col = 'b'"
8650
8651    Returns:
8652        The mapped expression.
8653    """
8654
8655    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
8656        if isinstance(node, Placeholder):
8657            if node.this:
8658                new_name = kwargs.get(node.this)
8659                if new_name is not None:
8660                    return convert(new_name)
8661            else:
8662                try:
8663                    return convert(next(args))
8664                except StopIteration:
8665                    pass
8666        return node
8667
8668    return expression.transform(_replace_placeholders, iter(args), **kwargs)
8669
8670
8671def expand(
8672    expression: Expression,
8673    sources: t.Dict[str, Query | t.Callable[[], Query]],
8674    dialect: DialectType = None,
8675    copy: bool = True,
8676) -> Expression:
8677    """Transforms an expression by expanding all referenced sources into subqueries.
8678
8679    Examples:
8680        >>> from sqlglot import parse_one
8681        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
8682        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
8683
8684        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
8685        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
8686
8687    Args:
8688        expression: The expression to expand.
8689        sources: A dict of name to query or a callable that provides a query on demand.
8690        dialect: The dialect of the sources dict or the callable.
8691        copy: Whether to copy the expression during transformation. Defaults to True.
8692
8693    Returns:
8694        The transformed expression.
8695    """
8696    normalized_sources = {normalize_table_name(k, dialect=dialect): v for k, v in sources.items()}
8697
8698    def _expand(node: Expression):
8699        if isinstance(node, Table):
8700            name = normalize_table_name(node, dialect=dialect)
8701            source = normalized_sources.get(name)
8702
8703            if source:
8704                # Create a subquery with the same alias (or table name if no alias)
8705                parsed_source = source() if callable(source) else source
8706                subquery = parsed_source.subquery(node.alias or name)
8707                subquery.comments = [f"source: {name}"]
8708
8709                # Continue expanding within the subquery
8710                return subquery.transform(_expand, copy=False)
8711
8712        return node
8713
8714    return expression.transform(_expand, copy=copy)
8715
8716
8717def func(name: str, *args, copy: bool = True, dialect: DialectType = None, **kwargs) -> Func:
8718    """
8719    Returns a Func expression.
8720
8721    Examples:
8722        >>> func("abs", 5).sql()
8723        'ABS(5)'
8724
8725        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
8726        'CAST(5 AS DOUBLE)'
8727
8728    Args:
8729        name: the name of the function to build.
8730        args: the args used to instantiate the function of interest.
8731        copy: whether to copy the argument expressions.
8732        dialect: the source dialect.
8733        kwargs: the kwargs used to instantiate the function of interest.
8734
8735    Note:
8736        The arguments `args` and `kwargs` are mutually exclusive.
8737
8738    Returns:
8739        An instance of the function of interest, or an anonymous function, if `name` doesn't
8740        correspond to an existing `sqlglot.expressions.Func` class.
8741    """
8742    if args and kwargs:
8743        raise ValueError("Can't use both args and kwargs to instantiate a function.")
8744
8745    from sqlglot.dialects.dialect import Dialect
8746
8747    dialect = Dialect.get_or_raise(dialect)
8748
8749    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect, copy=copy) for arg in args]
8750    kwargs = {key: maybe_parse(value, dialect=dialect, copy=copy) for key, value in kwargs.items()}
8751
8752    constructor = dialect.parser_class.FUNCTIONS.get(name.upper())
8753    if constructor:
8754        if converted:
8755            if "dialect" in constructor.__code__.co_varnames:
8756                function = constructor(converted, dialect=dialect)
8757            else:
8758                function = constructor(converted)
8759        elif constructor.__name__ == "from_arg_list":
8760            function = constructor.__self__(**kwargs)  # type: ignore
8761        else:
8762            constructor = FUNCTION_BY_NAME.get(name.upper())
8763            if constructor:
8764                function = constructor(**kwargs)
8765            else:
8766                raise ValueError(
8767                    f"Unable to convert '{name}' into a Func. Either manually construct "
8768                    "the Func expression of interest or parse the function call."
8769                )
8770    else:
8771        kwargs = kwargs or {"expressions": converted}
8772        function = Anonymous(this=name, **kwargs)
8773
8774    for error_message in function.error_messages(converted):
8775        raise ValueError(error_message)
8776
8777    return function
8778
8779
8780def case(
8781    expression: t.Optional[ExpOrStr] = None,
8782    **opts,
8783) -> Case:
8784    """
8785    Initialize a CASE statement.
8786
8787    Example:
8788        case().when("a = 1", "foo").else_("bar")
8789
8790    Args:
8791        expression: Optionally, the input expression (not all dialects support this)
8792        **opts: Extra keyword arguments for parsing `expression`
8793    """
8794    if expression is not None:
8795        this = maybe_parse(expression, **opts)
8796    else:
8797        this = None
8798    return Case(this=this, ifs=[])
8799
8800
8801def array(
8802    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8803) -> Array:
8804    """
8805    Returns an array.
8806
8807    Examples:
8808        >>> array(1, 'x').sql()
8809        'ARRAY(1, x)'
8810
8811    Args:
8812        expressions: the expressions to add to the array.
8813        copy: whether to copy the argument expressions.
8814        dialect: the source dialect.
8815        kwargs: the kwargs used to instantiate the function of interest.
8816
8817    Returns:
8818        An array expression.
8819    """
8820    return Array(
8821        expressions=[
8822            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8823            for expression in expressions
8824        ]
8825    )
8826
8827
8828def tuple_(
8829    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8830) -> Tuple:
8831    """
8832    Returns an tuple.
8833
8834    Examples:
8835        >>> tuple_(1, 'x').sql()
8836        '(1, x)'
8837
8838    Args:
8839        expressions: the expressions to add to the tuple.
8840        copy: whether to copy the argument expressions.
8841        dialect: the source dialect.
8842        kwargs: the kwargs used to instantiate the function of interest.
8843
8844    Returns:
8845        A tuple expression.
8846    """
8847    return Tuple(
8848        expressions=[
8849            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8850            for expression in expressions
8851        ]
8852    )
8853
8854
8855def true() -> Boolean:
8856    """
8857    Returns a true Boolean expression.
8858    """
8859    return Boolean(this=True)
8860
8861
8862def false() -> Boolean:
8863    """
8864    Returns a false Boolean expression.
8865    """
8866    return Boolean(this=False)
8867
8868
8869def null() -> Null:
8870    """
8871    Returns a Null expression.
8872    """
8873    return Null()
8874
8875
8876NONNULL_CONSTANTS = (
8877    Literal,
8878    Boolean,
8879)
8880
8881CONSTANTS = (
8882    Literal,
8883    Boolean,
8884    Null,
8885)
SQLGLOT_META = 'sqlglot.meta'
SQLGLOT_ANONYMOUS = 'sqlglot.anonymous'
TABLE_PARTS = ('this', 'db', 'catalog')
COLUMN_PARTS = ('this', 'table', 'db', 'catalog')
POSITION_META_KEYS = ('line', 'col', 'start', 'end')
class Expression:
  72class Expression(metaclass=_Expression):
  73    """
  74    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  75    context, such as its child expressions, their names (arg keys), and whether a given child expression
  76    is optional or not.
  77
  78    Attributes:
  79        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  80            and representing expressions as strings.
  81        arg_types: determines the arguments (child nodes) supported by an expression. It maps
  82            arg keys to booleans that indicate whether the corresponding args are optional.
  83        parent: a reference to the parent expression (or None, in case of root expressions).
  84        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  85            uses to refer to it.
  86        index: the index of an expression if it is inside of a list argument in its parent.
  87        comments: a list of comments that are associated with a given expression. This is used in
  88            order to preserve comments when transpiling SQL code.
  89        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  90            optimizer, in order to enable some transformations that require type information.
  91        meta: a dictionary that can be used to store useful metadata for a given expression.
  92
  93    Example:
  94        >>> class Foo(Expression):
  95        ...     arg_types = {"this": True, "expression": False}
  96
  97        The above definition informs us that Foo is an Expression that requires an argument called
  98        "this" and may also optionally receive an argument called "expression".
  99
 100    Args:
 101        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 102    """
 103
 104    key = "expression"
 105    arg_types = {"this": True}
 106    __slots__ = ("args", "parent", "arg_key", "index", "comments", "_type", "_meta", "_hash")
 107
 108    def __init__(self, **args: t.Any):
 109        self.args: t.Dict[str, t.Any] = args
 110        self.parent: t.Optional[Expression] = None
 111        self.arg_key: t.Optional[str] = None
 112        self.index: t.Optional[int] = None
 113        self.comments: t.Optional[t.List[str]] = None
 114        self._type: t.Optional[DataType] = None
 115        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 116        self._hash: t.Optional[int] = None
 117
 118        for arg_key, value in self.args.items():
 119            self._set_parent(arg_key, value)
 120
 121    def __eq__(self, other) -> bool:
 122        return type(self) is type(other) and hash(self) == hash(other)
 123
 124    @property
 125    def hashable_args(self) -> t.Any:
 126        return frozenset(
 127            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
 128            for k, v in self.args.items()
 129            if not (v is None or v is False or (type(v) is list and not v))
 130        )
 131
 132    def __hash__(self) -> int:
 133        if self._hash is not None:
 134            return self._hash
 135
 136        return hash((self.__class__, self.hashable_args))
 137
 138    @property
 139    def this(self) -> t.Any:
 140        """
 141        Retrieves the argument with key "this".
 142        """
 143        return self.args.get("this")
 144
 145    @property
 146    def expression(self) -> t.Any:
 147        """
 148        Retrieves the argument with key "expression".
 149        """
 150        return self.args.get("expression")
 151
 152    @property
 153    def expressions(self) -> t.List[t.Any]:
 154        """
 155        Retrieves the argument with key "expressions".
 156        """
 157        return self.args.get("expressions") or []
 158
 159    def text(self, key) -> str:
 160        """
 161        Returns a textual representation of the argument corresponding to "key". This can only be used
 162        for args that are strings or leaf Expression instances, such as identifiers and literals.
 163        """
 164        field = self.args.get(key)
 165        if isinstance(field, str):
 166            return field
 167        if isinstance(field, (Identifier, Literal, Var)):
 168            return field.this
 169        if isinstance(field, (Star, Null)):
 170            return field.name
 171        return ""
 172
 173    @property
 174    def is_string(self) -> bool:
 175        """
 176        Checks whether a Literal expression is a string.
 177        """
 178        return isinstance(self, Literal) and self.args["is_string"]
 179
 180    @property
 181    def is_number(self) -> bool:
 182        """
 183        Checks whether a Literal expression is a number.
 184        """
 185        return (isinstance(self, Literal) and not self.args["is_string"]) or (
 186            isinstance(self, Neg) and self.this.is_number
 187        )
 188
 189    def to_py(self) -> t.Any:
 190        """
 191        Returns a Python object equivalent of the SQL node.
 192        """
 193        raise ValueError(f"{self} cannot be converted to a Python object.")
 194
 195    @property
 196    def is_int(self) -> bool:
 197        """
 198        Checks whether an expression is an integer.
 199        """
 200        return self.is_number and isinstance(self.to_py(), int)
 201
 202    @property
 203    def is_star(self) -> bool:
 204        """Checks whether an expression is a star."""
 205        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 206
 207    @property
 208    def alias(self) -> str:
 209        """
 210        Returns the alias of the expression, or an empty string if it's not aliased.
 211        """
 212        if isinstance(self.args.get("alias"), TableAlias):
 213            return self.args["alias"].name
 214        return self.text("alias")
 215
 216    @property
 217    def alias_column_names(self) -> t.List[str]:
 218        table_alias = self.args.get("alias")
 219        if not table_alias:
 220            return []
 221        return [c.name for c in table_alias.args.get("columns") or []]
 222
 223    @property
 224    def name(self) -> str:
 225        return self.text("this")
 226
 227    @property
 228    def alias_or_name(self) -> str:
 229        return self.alias or self.name
 230
 231    @property
 232    def output_name(self) -> str:
 233        """
 234        Name of the output column if this expression is a selection.
 235
 236        If the Expression has no output name, an empty string is returned.
 237
 238        Example:
 239            >>> from sqlglot import parse_one
 240            >>> parse_one("SELECT a").expressions[0].output_name
 241            'a'
 242            >>> parse_one("SELECT b AS c").expressions[0].output_name
 243            'c'
 244            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 245            ''
 246        """
 247        return ""
 248
 249    @property
 250    def type(self) -> t.Optional[DataType]:
 251        return self._type
 252
 253    @type.setter
 254    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 255        if dtype and not isinstance(dtype, DataType):
 256            dtype = DataType.build(dtype)
 257        self._type = dtype  # type: ignore
 258
 259    def is_type(self, *dtypes) -> bool:
 260        return self.type is not None and self.type.is_type(*dtypes)
 261
 262    def is_leaf(self) -> bool:
 263        return not any(isinstance(v, (Expression, list)) for v in self.args.values())
 264
 265    @property
 266    def meta(self) -> t.Dict[str, t.Any]:
 267        if self._meta is None:
 268            self._meta = {}
 269        return self._meta
 270
 271    def __deepcopy__(self, memo):
 272        root = self.__class__()
 273        stack = [(self, root)]
 274
 275        while stack:
 276            node, copy = stack.pop()
 277
 278            if node.comments is not None:
 279                copy.comments = deepcopy(node.comments)
 280            if node._type is not None:
 281                copy._type = deepcopy(node._type)
 282            if node._meta is not None:
 283                copy._meta = deepcopy(node._meta)
 284            if node._hash is not None:
 285                copy._hash = node._hash
 286
 287            for k, vs in node.args.items():
 288                if hasattr(vs, "parent"):
 289                    stack.append((vs, vs.__class__()))
 290                    copy.set(k, stack[-1][-1])
 291                elif type(vs) is list:
 292                    copy.args[k] = []
 293
 294                    for v in vs:
 295                        if hasattr(v, "parent"):
 296                            stack.append((v, v.__class__()))
 297                            copy.append(k, stack[-1][-1])
 298                        else:
 299                            copy.append(k, v)
 300                else:
 301                    copy.args[k] = vs
 302
 303        return root
 304
 305    def copy(self) -> Self:
 306        """
 307        Returns a deep copy of the expression.
 308        """
 309        return deepcopy(self)
 310
 311    def add_comments(self, comments: t.Optional[t.List[str]] = None, prepend: bool = False) -> None:
 312        if self.comments is None:
 313            self.comments = []
 314
 315        if comments:
 316            for comment in comments:
 317                _, *meta = comment.split(SQLGLOT_META)
 318                if meta:
 319                    for kv in "".join(meta).split(","):
 320                        k, *v = kv.split("=")
 321                        value = v[0].strip() if v else True
 322                        self.meta[k.strip()] = to_bool(value)
 323
 324                if not prepend:
 325                    self.comments.append(comment)
 326
 327            if prepend:
 328                self.comments = comments + self.comments
 329
 330    def pop_comments(self) -> t.List[str]:
 331        comments = self.comments or []
 332        self.comments = None
 333        return comments
 334
 335    def append(self, arg_key: str, value: t.Any) -> None:
 336        """
 337        Appends value to arg_key if it's a list or sets it as a new list.
 338
 339        Args:
 340            arg_key (str): name of the list expression arg
 341            value (Any): value to append to the list
 342        """
 343        if type(self.args.get(arg_key)) is not list:
 344            self.args[arg_key] = []
 345        self._set_parent(arg_key, value)
 346        values = self.args[arg_key]
 347        if hasattr(value, "parent"):
 348            value.index = len(values)
 349        values.append(value)
 350
 351    def set(
 352        self,
 353        arg_key: str,
 354        value: t.Any,
 355        index: t.Optional[int] = None,
 356        overwrite: bool = True,
 357    ) -> None:
 358        """
 359        Sets arg_key to value.
 360
 361        Args:
 362            arg_key: name of the expression arg.
 363            value: value to set the arg to.
 364            index: if the arg is a list, this specifies what position to add the value in it.
 365            overwrite: assuming an index is given, this determines whether to overwrite the
 366                list entry instead of only inserting a new value (i.e., like list.insert).
 367        """
 368        if index is not None:
 369            expressions = self.args.get(arg_key) or []
 370
 371            if seq_get(expressions, index) is None:
 372                return
 373            if value is None:
 374                expressions.pop(index)
 375                for v in expressions[index:]:
 376                    v.index = v.index - 1
 377                return
 378
 379            if isinstance(value, list):
 380                expressions.pop(index)
 381                expressions[index:index] = value
 382            elif overwrite:
 383                expressions[index] = value
 384            else:
 385                expressions.insert(index, value)
 386
 387            value = expressions
 388        elif value is None:
 389            self.args.pop(arg_key, None)
 390            return
 391
 392        self.args[arg_key] = value
 393        self._set_parent(arg_key, value, index)
 394
 395    def _set_parent(self, arg_key: str, value: t.Any, index: t.Optional[int] = None) -> None:
 396        if hasattr(value, "parent"):
 397            value.parent = self
 398            value.arg_key = arg_key
 399            value.index = index
 400        elif type(value) is list:
 401            for index, v in enumerate(value):
 402                if hasattr(v, "parent"):
 403                    v.parent = self
 404                    v.arg_key = arg_key
 405                    v.index = index
 406
 407    @property
 408    def depth(self) -> int:
 409        """
 410        Returns the depth of this tree.
 411        """
 412        if self.parent:
 413            return self.parent.depth + 1
 414        return 0
 415
 416    def iter_expressions(self, reverse: bool = False) -> t.Iterator[Expression]:
 417        """Yields the key and expression for all arguments, exploding list args."""
 418        for vs in reversed(self.args.values()) if reverse else self.args.values():  # type: ignore
 419            if type(vs) is list:
 420                for v in reversed(vs) if reverse else vs:  # type: ignore
 421                    if hasattr(v, "parent"):
 422                        yield v
 423            else:
 424                if hasattr(vs, "parent"):
 425                    yield vs
 426
 427    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 428        """
 429        Returns the first node in this tree which matches at least one of
 430        the specified types.
 431
 432        Args:
 433            expression_types: the expression type(s) to match.
 434            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 435
 436        Returns:
 437            The node which matches the criteria or None if no such node was found.
 438        """
 439        return next(self.find_all(*expression_types, bfs=bfs), None)
 440
 441    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 442        """
 443        Returns a generator object which visits all nodes in this tree and only
 444        yields those that match at least one of the specified expression types.
 445
 446        Args:
 447            expression_types: the expression type(s) to match.
 448            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 449
 450        Returns:
 451            The generator object.
 452        """
 453        for expression in self.walk(bfs=bfs):
 454            if isinstance(expression, expression_types):
 455                yield expression
 456
 457    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 458        """
 459        Returns a nearest parent matching expression_types.
 460
 461        Args:
 462            expression_types: the expression type(s) to match.
 463
 464        Returns:
 465            The parent node.
 466        """
 467        ancestor = self.parent
 468        while ancestor and not isinstance(ancestor, expression_types):
 469            ancestor = ancestor.parent
 470        return ancestor  # type: ignore
 471
 472    @property
 473    def parent_select(self) -> t.Optional[Select]:
 474        """
 475        Returns the parent select statement.
 476        """
 477        return self.find_ancestor(Select)
 478
 479    @property
 480    def same_parent(self) -> bool:
 481        """Returns if the parent is the same class as itself."""
 482        return type(self.parent) is self.__class__
 483
 484    def root(self) -> Expression:
 485        """
 486        Returns the root expression of this tree.
 487        """
 488        expression = self
 489        while expression.parent:
 490            expression = expression.parent
 491        return expression
 492
 493    def walk(
 494        self, bfs: bool = True, prune: t.Optional[t.Callable[[Expression], bool]] = None
 495    ) -> t.Iterator[Expression]:
 496        """
 497        Returns a generator object which visits all nodes in this tree.
 498
 499        Args:
 500            bfs: if set to True the BFS traversal order will be applied,
 501                otherwise the DFS traversal will be used instead.
 502            prune: callable that returns True if the generator should stop traversing
 503                this branch of the tree.
 504
 505        Returns:
 506            the generator object.
 507        """
 508        if bfs:
 509            yield from self.bfs(prune=prune)
 510        else:
 511            yield from self.dfs(prune=prune)
 512
 513    def dfs(
 514        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 515    ) -> t.Iterator[Expression]:
 516        """
 517        Returns a generator object which visits all nodes in this tree in
 518        the DFS (Depth-first) order.
 519
 520        Returns:
 521            The generator object.
 522        """
 523        stack = [self]
 524
 525        while stack:
 526            node = stack.pop()
 527
 528            yield node
 529
 530            if prune and prune(node):
 531                continue
 532
 533            for v in node.iter_expressions(reverse=True):
 534                stack.append(v)
 535
 536    def bfs(
 537        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
 538    ) -> t.Iterator[Expression]:
 539        """
 540        Returns a generator object which visits all nodes in this tree in
 541        the BFS (Breadth-first) order.
 542
 543        Returns:
 544            The generator object.
 545        """
 546        queue = deque([self])
 547
 548        while queue:
 549            node = queue.popleft()
 550
 551            yield node
 552
 553            if prune and prune(node):
 554                continue
 555
 556            for v in node.iter_expressions():
 557                queue.append(v)
 558
 559    def unnest(self):
 560        """
 561        Returns the first non parenthesis child or self.
 562        """
 563        expression = self
 564        while type(expression) is Paren:
 565            expression = expression.this
 566        return expression
 567
 568    def unalias(self):
 569        """
 570        Returns the inner expression if this is an Alias.
 571        """
 572        if isinstance(self, Alias):
 573            return self.this
 574        return self
 575
 576    def unnest_operands(self):
 577        """
 578        Returns unnested operands as a tuple.
 579        """
 580        return tuple(arg.unnest() for arg in self.iter_expressions())
 581
 582    def flatten(self, unnest=True):
 583        """
 584        Returns a generator which yields child nodes whose parents are the same class.
 585
 586        A AND B AND C -> [A, B, C]
 587        """
 588        for node in self.dfs(prune=lambda n: n.parent and type(n) is not self.__class__):
 589            if type(node) is not self.__class__:
 590                yield node.unnest() if unnest and not isinstance(node, Subquery) else node
 591
 592    def __str__(self) -> str:
 593        return self.sql()
 594
 595    def __repr__(self) -> str:
 596        return _to_s(self)
 597
 598    def to_s(self) -> str:
 599        """
 600        Same as __repr__, but includes additional information which can be useful
 601        for debugging, like empty or missing args and the AST nodes' object IDs.
 602        """
 603        return _to_s(self, verbose=True)
 604
 605    def sql(self, dialect: DialectType = None, **opts) -> str:
 606        """
 607        Returns SQL string representation of this tree.
 608
 609        Args:
 610            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 611            opts: other `sqlglot.generator.Generator` options.
 612
 613        Returns:
 614            The SQL string.
 615        """
 616        from sqlglot.dialects import Dialect
 617
 618        return Dialect.get_or_raise(dialect).generate(self, **opts)
 619
 620    def transform(self, fun: t.Callable, *args: t.Any, copy: bool = True, **kwargs) -> Expression:
 621        """
 622        Visits all tree nodes (excluding already transformed ones)
 623        and applies the given transformation function to each node.
 624
 625        Args:
 626            fun: a function which takes a node as an argument and returns a
 627                new transformed node or the same node without modifications. If the function
 628                returns None, then the corresponding node will be removed from the syntax tree.
 629            copy: if set to True a new tree instance is constructed, otherwise the tree is
 630                modified in place.
 631
 632        Returns:
 633            The transformed tree.
 634        """
 635        root = None
 636        new_node = None
 637
 638        for node in (self.copy() if copy else self).dfs(prune=lambda n: n is not new_node):
 639            parent, arg_key, index = node.parent, node.arg_key, node.index
 640            new_node = fun(node, *args, **kwargs)
 641
 642            if not root:
 643                root = new_node
 644            elif parent and arg_key and new_node is not node:
 645                parent.set(arg_key, new_node, index)
 646
 647        assert root
 648        return root.assert_is(Expression)
 649
 650    @t.overload
 651    def replace(self, expression: E) -> E: ...
 652
 653    @t.overload
 654    def replace(self, expression: None) -> None: ...
 655
 656    def replace(self, expression):
 657        """
 658        Swap out this expression with a new expression.
 659
 660        For example::
 661
 662            >>> tree = Select().select("x").from_("tbl")
 663            >>> tree.find(Column).replace(column("y"))
 664            Column(
 665              this=Identifier(this=y, quoted=False))
 666            >>> tree.sql()
 667            'SELECT y FROM tbl'
 668
 669        Args:
 670            expression: new node
 671
 672        Returns:
 673            The new expression or expressions.
 674        """
 675        parent = self.parent
 676
 677        if not parent or parent is expression:
 678            return expression
 679
 680        key = self.arg_key
 681        value = parent.args.get(key)
 682
 683        if type(expression) is list and isinstance(value, Expression):
 684            # We are trying to replace an Expression with a list, so it's assumed that
 685            # the intention was to really replace the parent of this expression.
 686            value.parent.replace(expression)
 687        else:
 688            parent.set(key, expression, self.index)
 689
 690        if expression is not self:
 691            self.parent = None
 692            self.arg_key = None
 693            self.index = None
 694
 695        return expression
 696
 697    def pop(self: E) -> E:
 698        """
 699        Remove this expression from its AST.
 700
 701        Returns:
 702            The popped expression.
 703        """
 704        self.replace(None)
 705        return self
 706
 707    def assert_is(self, type_: t.Type[E]) -> E:
 708        """
 709        Assert that this `Expression` is an instance of `type_`.
 710
 711        If it is NOT an instance of `type_`, this raises an assertion error.
 712        Otherwise, this returns this expression.
 713
 714        Examples:
 715            This is useful for type security in chained expressions:
 716
 717            >>> import sqlglot
 718            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 719            'SELECT x, z FROM y'
 720        """
 721        if not isinstance(self, type_):
 722            raise AssertionError(f"{self} is not {type_}.")
 723        return self
 724
 725    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 726        """
 727        Checks if this expression is valid (e.g. all mandatory args are set).
 728
 729        Args:
 730            args: a sequence of values that were used to instantiate a Func expression. This is used
 731                to check that the provided arguments don't exceed the function argument limit.
 732
 733        Returns:
 734            A list of error messages for all possible errors that were found.
 735        """
 736        errors: t.List[str] = []
 737
 738        for k in self.args:
 739            if k not in self.arg_types:
 740                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 741        for k, mandatory in self.arg_types.items():
 742            v = self.args.get(k)
 743            if mandatory and (v is None or (isinstance(v, list) and not v)):
 744                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 745
 746        if (
 747            args
 748            and isinstance(self, Func)
 749            and len(args) > len(self.arg_types)
 750            and not self.is_var_len_args
 751        ):
 752            errors.append(
 753                f"The number of provided arguments ({len(args)}) is greater than "
 754                f"the maximum number of supported arguments ({len(self.arg_types)})"
 755            )
 756
 757        return errors
 758
 759    def dump(self):
 760        """
 761        Dump this Expression to a JSON-serializable dict.
 762        """
 763        from sqlglot.serde import dump
 764
 765        return dump(self)
 766
 767    @classmethod
 768    def load(cls, obj):
 769        """
 770        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 771        """
 772        from sqlglot.serde import load
 773
 774        return load(obj)
 775
 776    def and_(
 777        self,
 778        *expressions: t.Optional[ExpOrStr],
 779        dialect: DialectType = None,
 780        copy: bool = True,
 781        wrap: bool = True,
 782        **opts,
 783    ) -> Condition:
 784        """
 785        AND this condition with one or multiple expressions.
 786
 787        Example:
 788            >>> condition("x=1").and_("y=1").sql()
 789            'x = 1 AND y = 1'
 790
 791        Args:
 792            *expressions: the SQL code strings to parse.
 793                If an `Expression` instance is passed, it will be used as-is.
 794            dialect: the dialect used to parse the input expression.
 795            copy: whether to copy the involved expressions (only applies to Expressions).
 796            wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
 797                precedence issues, but can be turned off when the produced AST is too deep and
 798                causes recursion-related issues.
 799            opts: other options to use to parse the input expressions.
 800
 801        Returns:
 802            The new And condition.
 803        """
 804        return and_(self, *expressions, dialect=dialect, copy=copy, wrap=wrap, **opts)
 805
 806    def or_(
 807        self,
 808        *expressions: t.Optional[ExpOrStr],
 809        dialect: DialectType = None,
 810        copy: bool = True,
 811        wrap: bool = True,
 812        **opts,
 813    ) -> Condition:
 814        """
 815        OR this condition with one or multiple expressions.
 816
 817        Example:
 818            >>> condition("x=1").or_("y=1").sql()
 819            'x = 1 OR y = 1'
 820
 821        Args:
 822            *expressions: the SQL code strings to parse.
 823                If an `Expression` instance is passed, it will be used as-is.
 824            dialect: the dialect used to parse the input expression.
 825            copy: whether to copy the involved expressions (only applies to Expressions).
 826            wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
 827                precedence issues, but can be turned off when the produced AST is too deep and
 828                causes recursion-related issues.
 829            opts: other options to use to parse the input expressions.
 830
 831        Returns:
 832            The new Or condition.
 833        """
 834        return or_(self, *expressions, dialect=dialect, copy=copy, wrap=wrap, **opts)
 835
 836    def not_(self, copy: bool = True):
 837        """
 838        Wrap this condition with NOT.
 839
 840        Example:
 841            >>> condition("x=1").not_().sql()
 842            'NOT x = 1'
 843
 844        Args:
 845            copy: whether to copy this object.
 846
 847        Returns:
 848            The new Not instance.
 849        """
 850        return not_(self, copy=copy)
 851
 852    def update_positions(
 853        self: E, other: t.Optional[Token | Expression] = None, **kwargs: t.Any
 854    ) -> E:
 855        """
 856        Update this expression with positions from a token or other expression.
 857
 858        Args:
 859            other: a token or expression to update this expression with.
 860
 861        Returns:
 862            The updated expression.
 863        """
 864        if isinstance(other, Expression):
 865            self.meta.update({k: v for k, v in other.meta.items() if k in POSITION_META_KEYS})
 866        elif other is not None:
 867            self.meta.update(
 868                {
 869                    "line": other.line,
 870                    "col": other.col,
 871                    "start": other.start,
 872                    "end": other.end,
 873                }
 874            )
 875        self.meta.update({k: v for k, v in kwargs.items() if k in POSITION_META_KEYS})
 876        return self
 877
 878    def as_(
 879        self,
 880        alias: str | Identifier,
 881        quoted: t.Optional[bool] = None,
 882        dialect: DialectType = None,
 883        copy: bool = True,
 884        **opts,
 885    ) -> Alias:
 886        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 887
 888    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 889        this = self.copy()
 890        other = convert(other, copy=True)
 891        if not isinstance(this, klass) and not isinstance(other, klass):
 892            this = _wrap(this, Binary)
 893            other = _wrap(other, Binary)
 894        if reverse:
 895            return klass(this=other, expression=this)
 896        return klass(this=this, expression=other)
 897
 898    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
 899        return Bracket(
 900            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 901        )
 902
 903    def __iter__(self) -> t.Iterator:
 904        if "expressions" in self.arg_types:
 905            return iter(self.args.get("expressions") or [])
 906        # We define this because __getitem__ converts Expression into an iterable, which is
 907        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
 908        # See: https://peps.python.org/pep-0234/
 909        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
 910
 911    def isin(
 912        self,
 913        *expressions: t.Any,
 914        query: t.Optional[ExpOrStr] = None,
 915        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
 916        copy: bool = True,
 917        **opts,
 918    ) -> In:
 919        subquery = maybe_parse(query, copy=copy, **opts) if query else None
 920        if subquery and not isinstance(subquery, Subquery):
 921            subquery = subquery.subquery(copy=False)
 922
 923        return In(
 924            this=maybe_copy(self, copy),
 925            expressions=[convert(e, copy=copy) for e in expressions],
 926            query=subquery,
 927            unnest=(
 928                Unnest(
 929                    expressions=[
 930                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
 931                        for e in ensure_list(unnest)
 932                    ]
 933                )
 934                if unnest
 935                else None
 936            ),
 937        )
 938
 939    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 940        return Between(
 941            this=maybe_copy(self, copy),
 942            low=convert(low, copy=copy, **opts),
 943            high=convert(high, copy=copy, **opts),
 944        )
 945
 946    def is_(self, other: ExpOrStr) -> Is:
 947        return self._binop(Is, other)
 948
 949    def like(self, other: ExpOrStr) -> Like:
 950        return self._binop(Like, other)
 951
 952    def ilike(self, other: ExpOrStr) -> ILike:
 953        return self._binop(ILike, other)
 954
 955    def eq(self, other: t.Any) -> EQ:
 956        return self._binop(EQ, other)
 957
 958    def neq(self, other: t.Any) -> NEQ:
 959        return self._binop(NEQ, other)
 960
 961    def rlike(self, other: ExpOrStr) -> RegexpLike:
 962        return self._binop(RegexpLike, other)
 963
 964    def div(self, other: ExpOrStr, typed: bool = False, safe: bool = False) -> Div:
 965        div = self._binop(Div, other)
 966        div.args["typed"] = typed
 967        div.args["safe"] = safe
 968        return div
 969
 970    def asc(self, nulls_first: bool = True) -> Ordered:
 971        return Ordered(this=self.copy(), nulls_first=nulls_first)
 972
 973    def desc(self, nulls_first: bool = False) -> Ordered:
 974        return Ordered(this=self.copy(), desc=True, nulls_first=nulls_first)
 975
 976    def __lt__(self, other: t.Any) -> LT:
 977        return self._binop(LT, other)
 978
 979    def __le__(self, other: t.Any) -> LTE:
 980        return self._binop(LTE, other)
 981
 982    def __gt__(self, other: t.Any) -> GT:
 983        return self._binop(GT, other)
 984
 985    def __ge__(self, other: t.Any) -> GTE:
 986        return self._binop(GTE, other)
 987
 988    def __add__(self, other: t.Any) -> Add:
 989        return self._binop(Add, other)
 990
 991    def __radd__(self, other: t.Any) -> Add:
 992        return self._binop(Add, other, reverse=True)
 993
 994    def __sub__(self, other: t.Any) -> Sub:
 995        return self._binop(Sub, other)
 996
 997    def __rsub__(self, other: t.Any) -> Sub:
 998        return self._binop(Sub, other, reverse=True)
 999
1000    def __mul__(self, other: t.Any) -> Mul:
1001        return self._binop(Mul, other)
1002
1003    def __rmul__(self, other: t.Any) -> Mul:
1004        return self._binop(Mul, other, reverse=True)
1005
1006    def __truediv__(self, other: t.Any) -> Div:
1007        return self._binop(Div, other)
1008
1009    def __rtruediv__(self, other: t.Any) -> Div:
1010        return self._binop(Div, other, reverse=True)
1011
1012    def __floordiv__(self, other: t.Any) -> IntDiv:
1013        return self._binop(IntDiv, other)
1014
1015    def __rfloordiv__(self, other: t.Any) -> IntDiv:
1016        return self._binop(IntDiv, other, reverse=True)
1017
1018    def __mod__(self, other: t.Any) -> Mod:
1019        return self._binop(Mod, other)
1020
1021    def __rmod__(self, other: t.Any) -> Mod:
1022        return self._binop(Mod, other, reverse=True)
1023
1024    def __pow__(self, other: t.Any) -> Pow:
1025        return self._binop(Pow, other)
1026
1027    def __rpow__(self, other: t.Any) -> Pow:
1028        return self._binop(Pow, other, reverse=True)
1029
1030    def __and__(self, other: t.Any) -> And:
1031        return self._binop(And, other)
1032
1033    def __rand__(self, other: t.Any) -> And:
1034        return self._binop(And, other, reverse=True)
1035
1036    def __or__(self, other: t.Any) -> Or:
1037        return self._binop(Or, other)
1038
1039    def __ror__(self, other: t.Any) -> Or:
1040        return self._binop(Or, other, reverse=True)
1041
1042    def __neg__(self) -> Neg:
1043        return Neg(this=_wrap(self.copy(), Binary))
1044
1045    def __invert__(self) -> Not:
1046        return not_(self.copy())

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines the arguments (child nodes) supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • index: the index of an expression if it is inside of a list argument in its parent.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • type: the sqlglot.expressions.DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
  • meta: a dictionary that can be used to store useful metadata for a given expression.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
108    def __init__(self, **args: t.Any):
109        self.args: t.Dict[str, t.Any] = args
110        self.parent: t.Optional[Expression] = None
111        self.arg_key: t.Optional[str] = None
112        self.index: t.Optional[int] = None
113        self.comments: t.Optional[t.List[str]] = None
114        self._type: t.Optional[DataType] = None
115        self._meta: t.Optional[t.Dict[str, t.Any]] = None
116        self._hash: t.Optional[int] = None
117
118        for arg_key, value in self.args.items():
119            self._set_parent(arg_key, value)
key = 'expression'
arg_types = {'this': True}
args: Dict[str, Any]
parent: Optional[Expression]
arg_key: Optional[str]
index: Optional[int]
comments: Optional[List[str]]
hashable_args: Any
124    @property
125    def hashable_args(self) -> t.Any:
126        return frozenset(
127            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
128            for k, v in self.args.items()
129            if not (v is None or v is False or (type(v) is list and not v))
130        )
this: Any
138    @property
139    def this(self) -> t.Any:
140        """
141        Retrieves the argument with key "this".
142        """
143        return self.args.get("this")

Retrieves the argument with key "this".

expression: Any
145    @property
146    def expression(self) -> t.Any:
147        """
148        Retrieves the argument with key "expression".
149        """
150        return self.args.get("expression")

Retrieves the argument with key "expression".

expressions: List[Any]
152    @property
153    def expressions(self) -> t.List[t.Any]:
154        """
155        Retrieves the argument with key "expressions".
156        """
157        return self.args.get("expressions") or []

Retrieves the argument with key "expressions".

def text(self, key) -> str:
159    def text(self, key) -> str:
160        """
161        Returns a textual representation of the argument corresponding to "key". This can only be used
162        for args that are strings or leaf Expression instances, such as identifiers and literals.
163        """
164        field = self.args.get(key)
165        if isinstance(field, str):
166            return field
167        if isinstance(field, (Identifier, Literal, Var)):
168            return field.this
169        if isinstance(field, (Star, Null)):
170            return field.name
171        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool
173    @property
174    def is_string(self) -> bool:
175        """
176        Checks whether a Literal expression is a string.
177        """
178        return isinstance(self, Literal) and self.args["is_string"]

Checks whether a Literal expression is a string.

is_number: bool
180    @property
181    def is_number(self) -> bool:
182        """
183        Checks whether a Literal expression is a number.
184        """
185        return (isinstance(self, Literal) and not self.args["is_string"]) or (
186            isinstance(self, Neg) and self.this.is_number
187        )

Checks whether a Literal expression is a number.

def to_py(self) -> Any:
189    def to_py(self) -> t.Any:
190        """
191        Returns a Python object equivalent of the SQL node.
192        """
193        raise ValueError(f"{self} cannot be converted to a Python object.")

Returns a Python object equivalent of the SQL node.

is_int: bool
195    @property
196    def is_int(self) -> bool:
197        """
198        Checks whether an expression is an integer.
199        """
200        return self.is_number and isinstance(self.to_py(), int)

Checks whether an expression is an integer.

is_star: bool
202    @property
203    def is_star(self) -> bool:
204        """Checks whether an expression is a star."""
205        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))

Checks whether an expression is a star.

alias: str
207    @property
208    def alias(self) -> str:
209        """
210        Returns the alias of the expression, or an empty string if it's not aliased.
211        """
212        if isinstance(self.args.get("alias"), TableAlias):
213            return self.args["alias"].name
214        return self.text("alias")

Returns the alias of the expression, or an empty string if it's not aliased.

alias_column_names: List[str]
216    @property
217    def alias_column_names(self) -> t.List[str]:
218        table_alias = self.args.get("alias")
219        if not table_alias:
220            return []
221        return [c.name for c in table_alias.args.get("columns") or []]
name: str
223    @property
224    def name(self) -> str:
225        return self.text("this")
alias_or_name: str
227    @property
228    def alias_or_name(self) -> str:
229        return self.alias or self.name
output_name: str
231    @property
232    def output_name(self) -> str:
233        """
234        Name of the output column if this expression is a selection.
235
236        If the Expression has no output name, an empty string is returned.
237
238        Example:
239            >>> from sqlglot import parse_one
240            >>> parse_one("SELECT a").expressions[0].output_name
241            'a'
242            >>> parse_one("SELECT b AS c").expressions[0].output_name
243            'c'
244            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
245            ''
246        """
247        return ""

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
type: Optional[DataType]
249    @property
250    def type(self) -> t.Optional[DataType]:
251        return self._type
def is_type(self, *dtypes) -> bool:
259    def is_type(self, *dtypes) -> bool:
260        return self.type is not None and self.type.is_type(*dtypes)
def is_leaf(self) -> bool:
262    def is_leaf(self) -> bool:
263        return not any(isinstance(v, (Expression, list)) for v in self.args.values())
meta: Dict[str, Any]
265    @property
266    def meta(self) -> t.Dict[str, t.Any]:
267        if self._meta is None:
268            self._meta = {}
269        return self._meta
def copy(self) -> typing_extensions.Self:
305    def copy(self) -> Self:
306        """
307        Returns a deep copy of the expression.
308        """
309        return deepcopy(self)

Returns a deep copy of the expression.

def add_comments( self, comments: Optional[List[str]] = None, prepend: bool = False) -> None:
311    def add_comments(self, comments: t.Optional[t.List[str]] = None, prepend: bool = False) -> None:
312        if self.comments is None:
313            self.comments = []
314
315        if comments:
316            for comment in comments:
317                _, *meta = comment.split(SQLGLOT_META)
318                if meta:
319                    for kv in "".join(meta).split(","):
320                        k, *v = kv.split("=")
321                        value = v[0].strip() if v else True
322                        self.meta[k.strip()] = to_bool(value)
323
324                if not prepend:
325                    self.comments.append(comment)
326
327            if prepend:
328                self.comments = comments + self.comments
def pop_comments(self) -> List[str]:
330    def pop_comments(self) -> t.List[str]:
331        comments = self.comments or []
332        self.comments = None
333        return comments
def append(self, arg_key: str, value: Any) -> None:
335    def append(self, arg_key: str, value: t.Any) -> None:
336        """
337        Appends value to arg_key if it's a list or sets it as a new list.
338
339        Args:
340            arg_key (str): name of the list expression arg
341            value (Any): value to append to the list
342        """
343        if type(self.args.get(arg_key)) is not list:
344            self.args[arg_key] = []
345        self._set_parent(arg_key, value)
346        values = self.args[arg_key]
347        if hasattr(value, "parent"):
348            value.index = len(values)
349        values.append(value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set( self, arg_key: str, value: Any, index: Optional[int] = None, overwrite: bool = True) -> None:
351    def set(
352        self,
353        arg_key: str,
354        value: t.Any,
355        index: t.Optional[int] = None,
356        overwrite: bool = True,
357    ) -> None:
358        """
359        Sets arg_key to value.
360
361        Args:
362            arg_key: name of the expression arg.
363            value: value to set the arg to.
364            index: if the arg is a list, this specifies what position to add the value in it.
365            overwrite: assuming an index is given, this determines whether to overwrite the
366                list entry instead of only inserting a new value (i.e., like list.insert).
367        """
368        if index is not None:
369            expressions = self.args.get(arg_key) or []
370
371            if seq_get(expressions, index) is None:
372                return
373            if value is None:
374                expressions.pop(index)
375                for v in expressions[index:]:
376                    v.index = v.index - 1
377                return
378
379            if isinstance(value, list):
380                expressions.pop(index)
381                expressions[index:index] = value
382            elif overwrite:
383                expressions[index] = value
384            else:
385                expressions.insert(index, value)
386
387            value = expressions
388        elif value is None:
389            self.args.pop(arg_key, None)
390            return
391
392        self.args[arg_key] = value
393        self._set_parent(arg_key, value, index)

Sets arg_key to value.

Arguments:
  • arg_key: name of the expression arg.
  • value: value to set the arg to.
  • index: if the arg is a list, this specifies what position to add the value in it.
  • overwrite: assuming an index is given, this determines whether to overwrite the list entry instead of only inserting a new value (i.e., like list.insert).
depth: int
407    @property
408    def depth(self) -> int:
409        """
410        Returns the depth of this tree.
411        """
412        if self.parent:
413            return self.parent.depth + 1
414        return 0

Returns the depth of this tree.

def iter_expressions(self, reverse: bool = False) -> Iterator[Expression]:
416    def iter_expressions(self, reverse: bool = False) -> t.Iterator[Expression]:
417        """Yields the key and expression for all arguments, exploding list args."""
418        for vs in reversed(self.args.values()) if reverse else self.args.values():  # type: ignore
419            if type(vs) is list:
420                for v in reversed(vs) if reverse else vs:  # type: ignore
421                    if hasattr(v, "parent"):
422                        yield v
423            else:
424                if hasattr(vs, "parent"):
425                    yield vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
427    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
428        """
429        Returns the first node in this tree which matches at least one of
430        the specified types.
431
432        Args:
433            expression_types: the expression type(s) to match.
434            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
435
436        Returns:
437            The node which matches the criteria or None if no such node was found.
438        """
439        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
441    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
442        """
443        Returns a generator object which visits all nodes in this tree and only
444        yields those that match at least one of the specified expression types.
445
446        Args:
447            expression_types: the expression type(s) to match.
448            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
449
450        Returns:
451            The generator object.
452        """
453        for expression in self.walk(bfs=bfs):
454            if isinstance(expression, expression_types):
455                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
457    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
458        """
459        Returns a nearest parent matching expression_types.
460
461        Args:
462            expression_types: the expression type(s) to match.
463
464        Returns:
465            The parent node.
466        """
467        ancestor = self.parent
468        while ancestor and not isinstance(ancestor, expression_types):
469            ancestor = ancestor.parent
470        return ancestor  # type: ignore

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[Select]
472    @property
473    def parent_select(self) -> t.Optional[Select]:
474        """
475        Returns the parent select statement.
476        """
477        return self.find_ancestor(Select)

Returns the parent select statement.

same_parent: bool
479    @property
480    def same_parent(self) -> bool:
481        """Returns if the parent is the same class as itself."""
482        return type(self.parent) is self.__class__

Returns if the parent is the same class as itself.

def root(self) -> Expression:
484    def root(self) -> Expression:
485        """
486        Returns the root expression of this tree.
487        """
488        expression = self
489        while expression.parent:
490            expression = expression.parent
491        return expression

Returns the root expression of this tree.

def walk( self, bfs: bool = True, prune: Optional[Callable[[Expression], bool]] = None) -> Iterator[Expression]:
493    def walk(
494        self, bfs: bool = True, prune: t.Optional[t.Callable[[Expression], bool]] = None
495    ) -> t.Iterator[Expression]:
496        """
497        Returns a generator object which visits all nodes in this tree.
498
499        Args:
500            bfs: if set to True the BFS traversal order will be applied,
501                otherwise the DFS traversal will be used instead.
502            prune: callable that returns True if the generator should stop traversing
503                this branch of the tree.
504
505        Returns:
506            the generator object.
507        """
508        if bfs:
509            yield from self.bfs(prune=prune)
510        else:
511            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs: if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune: callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs( self, prune: Optional[Callable[[Expression], bool]] = None) -> Iterator[Expression]:
513    def dfs(
514        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
515    ) -> t.Iterator[Expression]:
516        """
517        Returns a generator object which visits all nodes in this tree in
518        the DFS (Depth-first) order.
519
520        Returns:
521            The generator object.
522        """
523        stack = [self]
524
525        while stack:
526            node = stack.pop()
527
528            yield node
529
530            if prune and prune(node):
531                continue
532
533            for v in node.iter_expressions(reverse=True):
534                stack.append(v)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs( self, prune: Optional[Callable[[Expression], bool]] = None) -> Iterator[Expression]:
536    def bfs(
537        self, prune: t.Optional[t.Callable[[Expression], bool]] = None
538    ) -> t.Iterator[Expression]:
539        """
540        Returns a generator object which visits all nodes in this tree in
541        the BFS (Breadth-first) order.
542
543        Returns:
544            The generator object.
545        """
546        queue = deque([self])
547
548        while queue:
549            node = queue.popleft()
550
551            yield node
552
553            if prune and prune(node):
554                continue
555
556            for v in node.iter_expressions():
557                queue.append(v)

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
559    def unnest(self):
560        """
561        Returns the first non parenthesis child or self.
562        """
563        expression = self
564        while type(expression) is Paren:
565            expression = expression.this
566        return expression

Returns the first non parenthesis child or self.

def unalias(self):
568    def unalias(self):
569        """
570        Returns the inner expression if this is an Alias.
571        """
572        if isinstance(self, Alias):
573            return self.this
574        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
576    def unnest_operands(self):
577        """
578        Returns unnested operands as a tuple.
579        """
580        return tuple(arg.unnest() for arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
582    def flatten(self, unnest=True):
583        """
584        Returns a generator which yields child nodes whose parents are the same class.
585
586        A AND B AND C -> [A, B, C]
587        """
588        for node in self.dfs(prune=lambda n: n.parent and type(n) is not self.__class__):
589            if type(node) is not self.__class__:
590                yield node.unnest() if unnest and not isinstance(node, Subquery) else node

Returns a generator which yields child nodes whose parents are the same class.

A AND B AND C -> [A, B, C]

def to_s(self) -> str:
598    def to_s(self) -> str:
599        """
600        Same as __repr__, but includes additional information which can be useful
601        for debugging, like empty or missing args and the AST nodes' object IDs.
602        """
603        return _to_s(self, verbose=True)

Same as __repr__, but includes additional information which can be useful for debugging, like empty or missing args and the AST nodes' object IDs.

def sql( self, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> str:
605    def sql(self, dialect: DialectType = None, **opts) -> str:
606        """
607        Returns SQL string representation of this tree.
608
609        Args:
610            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
611            opts: other `sqlglot.generator.Generator` options.
612
613        Returns:
614            The SQL string.
615        """
616        from sqlglot.dialects import Dialect
617
618        return Dialect.get_or_raise(dialect).generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform( self, fun: Callable, *args: Any, copy: bool = True, **kwargs) -> Expression:
620    def transform(self, fun: t.Callable, *args: t.Any, copy: bool = True, **kwargs) -> Expression:
621        """
622        Visits all tree nodes (excluding already transformed ones)
623        and applies the given transformation function to each node.
624
625        Args:
626            fun: a function which takes a node as an argument and returns a
627                new transformed node or the same node without modifications. If the function
628                returns None, then the corresponding node will be removed from the syntax tree.
629            copy: if set to True a new tree instance is constructed, otherwise the tree is
630                modified in place.
631
632        Returns:
633            The transformed tree.
634        """
635        root = None
636        new_node = None
637
638        for node in (self.copy() if copy else self).dfs(prune=lambda n: n is not new_node):
639            parent, arg_key, index = node.parent, node.arg_key, node.index
640            new_node = fun(node, *args, **kwargs)
641
642            if not root:
643                root = new_node
644            elif parent and arg_key and new_node is not node:
645                parent.set(arg_key, new_node, index)
646
647        assert root
648        return root.assert_is(Expression)

Visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun: a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy: if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
656    def replace(self, expression):
657        """
658        Swap out this expression with a new expression.
659
660        For example::
661
662            >>> tree = Select().select("x").from_("tbl")
663            >>> tree.find(Column).replace(column("y"))
664            Column(
665              this=Identifier(this=y, quoted=False))
666            >>> tree.sql()
667            'SELECT y FROM tbl'
668
669        Args:
670            expression: new node
671
672        Returns:
673            The new expression or expressions.
674        """
675        parent = self.parent
676
677        if not parent or parent is expression:
678            return expression
679
680        key = self.arg_key
681        value = parent.args.get(key)
682
683        if type(expression) is list and isinstance(value, Expression):
684            # We are trying to replace an Expression with a list, so it's assumed that
685            # the intention was to really replace the parent of this expression.
686            value.parent.replace(expression)
687        else:
688            parent.set(key, expression, self.index)
689
690        if expression is not self:
691            self.parent = None
692            self.arg_key = None
693            self.index = None
694
695        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(column("y"))
Column(
  this=Identifier(this=y, quoted=False))
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
697    def pop(self: E) -> E:
698        """
699        Remove this expression from its AST.
700
701        Returns:
702            The popped expression.
703        """
704        self.replace(None)
705        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
707    def assert_is(self, type_: t.Type[E]) -> E:
708        """
709        Assert that this `Expression` is an instance of `type_`.
710
711        If it is NOT an instance of `type_`, this raises an assertion error.
712        Otherwise, this returns this expression.
713
714        Examples:
715            This is useful for type security in chained expressions:
716
717            >>> import sqlglot
718            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
719            'SELECT x, z FROM y'
720        """
721        if not isinstance(self, type_):
722            raise AssertionError(f"{self} is not {type_}.")
723        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
725    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
726        """
727        Checks if this expression is valid (e.g. all mandatory args are set).
728
729        Args:
730            args: a sequence of values that were used to instantiate a Func expression. This is used
731                to check that the provided arguments don't exceed the function argument limit.
732
733        Returns:
734            A list of error messages for all possible errors that were found.
735        """
736        errors: t.List[str] = []
737
738        for k in self.args:
739            if k not in self.arg_types:
740                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
741        for k, mandatory in self.arg_types.items():
742            v = self.args.get(k)
743            if mandatory and (v is None or (isinstance(v, list) and not v)):
744                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
745
746        if (
747            args
748            and isinstance(self, Func)
749            and len(args) > len(self.arg_types)
750            and not self.is_var_len_args
751        ):
752            errors.append(
753                f"The number of provided arguments ({len(args)}) is greater than "
754                f"the maximum number of supported arguments ({len(self.arg_types)})"
755            )
756
757        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
759    def dump(self):
760        """
761        Dump this Expression to a JSON-serializable dict.
762        """
763        from sqlglot.serde import dump
764
765        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
767    @classmethod
768    def load(cls, obj):
769        """
770        Load a dict (as returned by `Expression.dump`) into an Expression instance.
771        """
772        from sqlglot.serde import load
773
774        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

def and_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, wrap: bool = True, **opts) -> Condition:
776    def and_(
777        self,
778        *expressions: t.Optional[ExpOrStr],
779        dialect: DialectType = None,
780        copy: bool = True,
781        wrap: bool = True,
782        **opts,
783    ) -> Condition:
784        """
785        AND this condition with one or multiple expressions.
786
787        Example:
788            >>> condition("x=1").and_("y=1").sql()
789            'x = 1 AND y = 1'
790
791        Args:
792            *expressions: the SQL code strings to parse.
793                If an `Expression` instance is passed, it will be used as-is.
794            dialect: the dialect used to parse the input expression.
795            copy: whether to copy the involved expressions (only applies to Expressions).
796            wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
797                precedence issues, but can be turned off when the produced AST is too deep and
798                causes recursion-related issues.
799            opts: other options to use to parse the input expressions.
800
801        Returns:
802            The new And condition.
803        """
804        return and_(self, *expressions, dialect=dialect, copy=copy, wrap=wrap, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the involved expressions (only applies to Expressions).
  • wrap: whether to wrap the operands in Parens. This is true by default to avoid precedence issues, but can be turned off when the produced AST is too deep and causes recursion-related issues.
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, wrap: bool = True, **opts) -> Condition:
806    def or_(
807        self,
808        *expressions: t.Optional[ExpOrStr],
809        dialect: DialectType = None,
810        copy: bool = True,
811        wrap: bool = True,
812        **opts,
813    ) -> Condition:
814        """
815        OR this condition with one or multiple expressions.
816
817        Example:
818            >>> condition("x=1").or_("y=1").sql()
819            'x = 1 OR y = 1'
820
821        Args:
822            *expressions: the SQL code strings to parse.
823                If an `Expression` instance is passed, it will be used as-is.
824            dialect: the dialect used to parse the input expression.
825            copy: whether to copy the involved expressions (only applies to Expressions).
826            wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
827                precedence issues, but can be turned off when the produced AST is too deep and
828                causes recursion-related issues.
829            opts: other options to use to parse the input expressions.
830
831        Returns:
832            The new Or condition.
833        """
834        return or_(self, *expressions, dialect=dialect, copy=copy, wrap=wrap, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the involved expressions (only applies to Expressions).
  • wrap: whether to wrap the operands in Parens. This is true by default to avoid precedence issues, but can be turned off when the produced AST is too deep and causes recursion-related issues.
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
836    def not_(self, copy: bool = True):
837        """
838        Wrap this condition with NOT.
839
840        Example:
841            >>> condition("x=1").not_().sql()
842            'NOT x = 1'
843
844        Args:
845            copy: whether to copy this object.
846
847        Returns:
848            The new Not instance.
849        """
850        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether to copy this object.
Returns:

The new Not instance.

def update_positions( self: ~E, other: Union[sqlglot.tokens.Token, Expression, NoneType] = None, **kwargs: Any) -> ~E:
852    def update_positions(
853        self: E, other: t.Optional[Token | Expression] = None, **kwargs: t.Any
854    ) -> E:
855        """
856        Update this expression with positions from a token or other expression.
857
858        Args:
859            other: a token or expression to update this expression with.
860
861        Returns:
862            The updated expression.
863        """
864        if isinstance(other, Expression):
865            self.meta.update({k: v for k, v in other.meta.items() if k in POSITION_META_KEYS})
866        elif other is not None:
867            self.meta.update(
868                {
869                    "line": other.line,
870                    "col": other.col,
871                    "start": other.start,
872                    "end": other.end,
873                }
874            )
875        self.meta.update({k: v for k, v in kwargs.items() if k in POSITION_META_KEYS})
876        return self

Update this expression with positions from a token or other expression.

Arguments:
  • other: a token or expression to update this expression with.
Returns:

The updated expression.

def as_( self, alias: str | Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Alias:
878    def as_(
879        self,
880        alias: str | Identifier,
881        quoted: t.Optional[bool] = None,
882        dialect: DialectType = None,
883        copy: bool = True,
884        **opts,
885    ) -> Alias:
886        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
911    def isin(
912        self,
913        *expressions: t.Any,
914        query: t.Optional[ExpOrStr] = None,
915        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
916        copy: bool = True,
917        **opts,
918    ) -> In:
919        subquery = maybe_parse(query, copy=copy, **opts) if query else None
920        if subquery and not isinstance(subquery, Subquery):
921            subquery = subquery.subquery(copy=False)
922
923        return In(
924            this=maybe_copy(self, copy),
925            expressions=[convert(e, copy=copy) for e in expressions],
926            query=subquery,
927            unnest=(
928                Unnest(
929                    expressions=[
930                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
931                        for e in ensure_list(unnest)
932                    ]
933                )
934                if unnest
935                else None
936            ),
937        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> Between:
939    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
940        return Between(
941            this=maybe_copy(self, copy),
942            low=convert(low, copy=copy, **opts),
943            high=convert(high, copy=copy, **opts),
944        )
def is_( self, other: Union[str, Expression]) -> Is:
946    def is_(self, other: ExpOrStr) -> Is:
947        return self._binop(Is, other)
def like( self, other: Union[str, Expression]) -> Like:
949    def like(self, other: ExpOrStr) -> Like:
950        return self._binop(Like, other)
def ilike( self, other: Union[str, Expression]) -> ILike:
952    def ilike(self, other: ExpOrStr) -> ILike:
953        return self._binop(ILike, other)
def eq(self, other: Any) -> EQ:
955    def eq(self, other: t.Any) -> EQ:
956        return self._binop(EQ, other)
def neq(self, other: Any) -> NEQ:
958    def neq(self, other: t.Any) -> NEQ:
959        return self._binop(NEQ, other)
def rlike( self, other: Union[str, Expression]) -> RegexpLike:
961    def rlike(self, other: ExpOrStr) -> RegexpLike:
962        return self._binop(RegexpLike, other)
def div( self, other: Union[str, Expression], typed: bool = False, safe: bool = False) -> Div:
964    def div(self, other: ExpOrStr, typed: bool = False, safe: bool = False) -> Div:
965        div = self._binop(Div, other)
966        div.args["typed"] = typed
967        div.args["safe"] = safe
968        return div
def asc(self, nulls_first: bool = True) -> Ordered:
970    def asc(self, nulls_first: bool = True) -> Ordered:
971        return Ordered(this=self.copy(), nulls_first=nulls_first)
def desc(self, nulls_first: bool = False) -> Ordered:
973    def desc(self, nulls_first: bool = False) -> Ordered:
974        return Ordered(this=self.copy(), desc=True, nulls_first=nulls_first)
IntoType = typing.Union[str, typing.Type[Expression], typing.Collection[typing.Union[str, typing.Type[Expression]]]]
ExpOrStr = typing.Union[str, Expression]
class Condition(Expression):
1057class Condition(Expression):
1058    """Logical conditions like x AND y, or simply x"""

Logical conditions like x AND y, or simply x

key = 'condition'
class Predicate(Condition):
1061class Predicate(Condition):
1062    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

key = 'predicate'
class DerivedTable(Expression):
1065class DerivedTable(Expression):
1066    @property
1067    def selects(self) -> t.List[Expression]:
1068        return self.this.selects if isinstance(self.this, Query) else []
1069
1070    @property
1071    def named_selects(self) -> t.List[str]:
1072        return [select.output_name for select in self.selects]
selects: List[Expression]
1066    @property
1067    def selects(self) -> t.List[Expression]:
1068        return self.this.selects if isinstance(self.this, Query) else []
named_selects: List[str]
1070    @property
1071    def named_selects(self) -> t.List[str]:
1072        return [select.output_name for select in self.selects]
key = 'derivedtable'
class Query(Expression):
1075class Query(Expression):
1076    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
1077        """
1078        Returns a `Subquery` that wraps around this query.
1079
1080        Example:
1081            >>> subquery = Select().select("x").from_("tbl").subquery()
1082            >>> Select().select("x").from_(subquery).sql()
1083            'SELECT x FROM (SELECT x FROM tbl)'
1084
1085        Args:
1086            alias: an optional alias for the subquery.
1087            copy: if `False`, modify this expression instance in-place.
1088        """
1089        instance = maybe_copy(self, copy)
1090        if not isinstance(alias, Expression):
1091            alias = TableAlias(this=to_identifier(alias)) if alias else None
1092
1093        return Subquery(this=instance, alias=alias)
1094
1095    def limit(
1096        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1097    ) -> Q:
1098        """
1099        Adds a LIMIT clause to this query.
1100
1101        Example:
1102            >>> select("1").union(select("1")).limit(1).sql()
1103            'SELECT 1 UNION SELECT 1 LIMIT 1'
1104
1105        Args:
1106            expression: the SQL code string to parse.
1107                This can also be an integer.
1108                If a `Limit` instance is passed, it will be used as-is.
1109                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
1110            dialect: the dialect used to parse the input expression.
1111            copy: if `False`, modify this expression instance in-place.
1112            opts: other options to use to parse the input expressions.
1113
1114        Returns:
1115            A limited Select expression.
1116        """
1117        return _apply_builder(
1118            expression=expression,
1119            instance=self,
1120            arg="limit",
1121            into=Limit,
1122            prefix="LIMIT",
1123            dialect=dialect,
1124            copy=copy,
1125            into_arg="expression",
1126            **opts,
1127        )
1128
1129    def offset(
1130        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1131    ) -> Q:
1132        """
1133        Set the OFFSET expression.
1134
1135        Example:
1136            >>> Select().from_("tbl").select("x").offset(10).sql()
1137            'SELECT x FROM tbl OFFSET 10'
1138
1139        Args:
1140            expression: the SQL code string to parse.
1141                This can also be an integer.
1142                If a `Offset` instance is passed, this is used as-is.
1143                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
1144            dialect: the dialect used to parse the input expression.
1145            copy: if `False`, modify this expression instance in-place.
1146            opts: other options to use to parse the input expressions.
1147
1148        Returns:
1149            The modified Select expression.
1150        """
1151        return _apply_builder(
1152            expression=expression,
1153            instance=self,
1154            arg="offset",
1155            into=Offset,
1156            prefix="OFFSET",
1157            dialect=dialect,
1158            copy=copy,
1159            into_arg="expression",
1160            **opts,
1161        )
1162
1163    def order_by(
1164        self: Q,
1165        *expressions: t.Optional[ExpOrStr],
1166        append: bool = True,
1167        dialect: DialectType = None,
1168        copy: bool = True,
1169        **opts,
1170    ) -> Q:
1171        """
1172        Set the ORDER BY expression.
1173
1174        Example:
1175            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
1176            'SELECT x FROM tbl ORDER BY x DESC'
1177
1178        Args:
1179            *expressions: the SQL code strings to parse.
1180                If a `Group` instance is passed, this is used as-is.
1181                If another `Expression` instance is passed, it will be wrapped in a `Order`.
1182            append: if `True`, add to any existing expressions.
1183                Otherwise, this flattens all the `Order` expression into a single expression.
1184            dialect: the dialect used to parse the input expression.
1185            copy: if `False`, modify this expression instance in-place.
1186            opts: other options to use to parse the input expressions.
1187
1188        Returns:
1189            The modified Select expression.
1190        """
1191        return _apply_child_list_builder(
1192            *expressions,
1193            instance=self,
1194            arg="order",
1195            append=append,
1196            copy=copy,
1197            prefix="ORDER BY",
1198            into=Order,
1199            dialect=dialect,
1200            **opts,
1201        )
1202
1203    @property
1204    def ctes(self) -> t.List[CTE]:
1205        """Returns a list of all the CTEs attached to this query."""
1206        with_ = self.args.get("with")
1207        return with_.expressions if with_ else []
1208
1209    @property
1210    def selects(self) -> t.List[Expression]:
1211        """Returns the query's projections."""
1212        raise NotImplementedError("Query objects must implement `selects`")
1213
1214    @property
1215    def named_selects(self) -> t.List[str]:
1216        """Returns the output names of the query's projections."""
1217        raise NotImplementedError("Query objects must implement `named_selects`")
1218
1219    def select(
1220        self: Q,
1221        *expressions: t.Optional[ExpOrStr],
1222        append: bool = True,
1223        dialect: DialectType = None,
1224        copy: bool = True,
1225        **opts,
1226    ) -> Q:
1227        """
1228        Append to or set the SELECT expressions.
1229
1230        Example:
1231            >>> Select().select("x", "y").sql()
1232            'SELECT x, y'
1233
1234        Args:
1235            *expressions: the SQL code strings to parse.
1236                If an `Expression` instance is passed, it will be used as-is.
1237            append: if `True`, add to any existing expressions.
1238                Otherwise, this resets the expressions.
1239            dialect: the dialect used to parse the input expressions.
1240            copy: if `False`, modify this expression instance in-place.
1241            opts: other options to use to parse the input expressions.
1242
1243        Returns:
1244            The modified Query expression.
1245        """
1246        raise NotImplementedError("Query objects must implement `select`")
1247
1248    def where(
1249        self: Q,
1250        *expressions: t.Optional[ExpOrStr],
1251        append: bool = True,
1252        dialect: DialectType = None,
1253        copy: bool = True,
1254        **opts,
1255    ) -> Q:
1256        """
1257        Append to or set the WHERE expressions.
1258
1259        Examples:
1260            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
1261            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
1262
1263        Args:
1264            *expressions: the SQL code strings to parse.
1265                If an `Expression` instance is passed, it will be used as-is.
1266                Multiple expressions are combined with an AND operator.
1267            append: if `True`, AND the new expressions to any existing expression.
1268                Otherwise, this resets the expression.
1269            dialect: the dialect used to parse the input expressions.
1270            copy: if `False`, modify this expression instance in-place.
1271            opts: other options to use to parse the input expressions.
1272
1273        Returns:
1274            The modified expression.
1275        """
1276        return _apply_conjunction_builder(
1277            *[expr.this if isinstance(expr, Where) else expr for expr in expressions],
1278            instance=self,
1279            arg="where",
1280            append=append,
1281            into=Where,
1282            dialect=dialect,
1283            copy=copy,
1284            **opts,
1285        )
1286
1287    def with_(
1288        self: Q,
1289        alias: ExpOrStr,
1290        as_: ExpOrStr,
1291        recursive: t.Optional[bool] = None,
1292        materialized: t.Optional[bool] = None,
1293        append: bool = True,
1294        dialect: DialectType = None,
1295        copy: bool = True,
1296        scalar: bool = False,
1297        **opts,
1298    ) -> Q:
1299        """
1300        Append to or set the common table expressions.
1301
1302        Example:
1303            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
1304            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
1305
1306        Args:
1307            alias: the SQL code string to parse as the table name.
1308                If an `Expression` instance is passed, this is used as-is.
1309            as_: the SQL code string to parse as the table expression.
1310                If an `Expression` instance is passed, it will be used as-is.
1311            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1312            materialized: set the MATERIALIZED part of the expression.
1313            append: if `True`, add to any existing expressions.
1314                Otherwise, this resets the expressions.
1315            dialect: the dialect used to parse the input expression.
1316            copy: if `False`, modify this expression instance in-place.
1317            scalar: if `True`, this is a scalar common table expression.
1318            opts: other options to use to parse the input expressions.
1319
1320        Returns:
1321            The modified expression.
1322        """
1323        return _apply_cte_builder(
1324            self,
1325            alias,
1326            as_,
1327            recursive=recursive,
1328            materialized=materialized,
1329            append=append,
1330            dialect=dialect,
1331            copy=copy,
1332            scalar=scalar,
1333            **opts,
1334        )
1335
1336    def union(
1337        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1338    ) -> Union:
1339        """
1340        Builds a UNION expression.
1341
1342        Example:
1343            >>> import sqlglot
1344            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
1345            'SELECT * FROM foo UNION SELECT * FROM bla'
1346
1347        Args:
1348            expressions: the SQL code strings.
1349                If `Expression` instances are passed, they will be used as-is.
1350            distinct: set the DISTINCT flag if and only if this is true.
1351            dialect: the dialect used to parse the input expression.
1352            opts: other options to use to parse the input expressions.
1353
1354        Returns:
1355            The new Union expression.
1356        """
1357        return union(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1358
1359    def intersect(
1360        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1361    ) -> Intersect:
1362        """
1363        Builds an INTERSECT expression.
1364
1365        Example:
1366            >>> import sqlglot
1367            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
1368            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
1369
1370        Args:
1371            expressions: the SQL code strings.
1372                If `Expression` instances are passed, they will be used as-is.
1373            distinct: set the DISTINCT flag if and only if this is true.
1374            dialect: the dialect used to parse the input expression.
1375            opts: other options to use to parse the input expressions.
1376
1377        Returns:
1378            The new Intersect expression.
1379        """
1380        return intersect(self, *expressions, distinct=distinct, dialect=dialect, **opts)
1381
1382    def except_(
1383        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1384    ) -> Except:
1385        """
1386        Builds an EXCEPT expression.
1387
1388        Example:
1389            >>> import sqlglot
1390            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
1391            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
1392
1393        Args:
1394            expressions: the SQL code strings.
1395                If `Expression` instance are passed, they will be used as-is.
1396            distinct: set the DISTINCT flag if and only if this is true.
1397            dialect: the dialect used to parse the input expression.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            The new Except expression.
1402        """
1403        return except_(self, *expressions, distinct=distinct, dialect=dialect, **opts)
def subquery( self, alias: Union[str, Expression, NoneType] = None, copy: bool = True) -> Subquery:
1076    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
1077        """
1078        Returns a `Subquery` that wraps around this query.
1079
1080        Example:
1081            >>> subquery = Select().select("x").from_("tbl").subquery()
1082            >>> Select().select("x").from_(subquery).sql()
1083            'SELECT x FROM (SELECT x FROM tbl)'
1084
1085        Args:
1086            alias: an optional alias for the subquery.
1087            copy: if `False`, modify this expression instance in-place.
1088        """
1089        instance = maybe_copy(self, copy)
1090        if not isinstance(alias, Expression):
1091            alias = TableAlias(this=to_identifier(alias)) if alias else None
1092
1093        return Subquery(this=instance, alias=alias)

Returns a Subquery that wraps around this query.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias: an optional alias for the subquery.
  • copy: if False, modify this expression instance in-place.
def limit( self: ~Q, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1095    def limit(
1096        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1097    ) -> Q:
1098        """
1099        Adds a LIMIT clause to this query.
1100
1101        Example:
1102            >>> select("1").union(select("1")).limit(1).sql()
1103            'SELECT 1 UNION SELECT 1 LIMIT 1'
1104
1105        Args:
1106            expression: the SQL code string to parse.
1107                This can also be an integer.
1108                If a `Limit` instance is passed, it will be used as-is.
1109                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
1110            dialect: the dialect used to parse the input expression.
1111            copy: if `False`, modify this expression instance in-place.
1112            opts: other options to use to parse the input expressions.
1113
1114        Returns:
1115            A limited Select expression.
1116        """
1117        return _apply_builder(
1118            expression=expression,
1119            instance=self,
1120            arg="limit",
1121            into=Limit,
1122            prefix="LIMIT",
1123            dialect=dialect,
1124            copy=copy,
1125            into_arg="expression",
1126            **opts,
1127        )

Adds a LIMIT clause to this query.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT 1 UNION SELECT 1 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, it will be used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

A limited Select expression.

def offset( self: ~Q, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1129    def offset(
1130        self: Q, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
1131    ) -> Q:
1132        """
1133        Set the OFFSET expression.
1134
1135        Example:
1136            >>> Select().from_("tbl").select("x").offset(10).sql()
1137            'SELECT x FROM tbl OFFSET 10'
1138
1139        Args:
1140            expression: the SQL code string to parse.
1141                This can also be an integer.
1142                If a `Offset` instance is passed, this is used as-is.
1143                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
1144            dialect: the dialect used to parse the input expression.
1145            copy: if `False`, modify this expression instance in-place.
1146            opts: other options to use to parse the input expressions.
1147
1148        Returns:
1149            The modified Select expression.
1150        """
1151        return _apply_builder(
1152            expression=expression,
1153            instance=self,
1154            arg="offset",
1155            into=Offset,
1156            prefix="OFFSET",
1157            dialect=dialect,
1158            copy=copy,
1159            into_arg="expression",
1160            **opts,
1161        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self: ~Q, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1163    def order_by(
1164        self: Q,
1165        *expressions: t.Optional[ExpOrStr],
1166        append: bool = True,
1167        dialect: DialectType = None,
1168        copy: bool = True,
1169        **opts,
1170    ) -> Q:
1171        """
1172        Set the ORDER BY expression.
1173
1174        Example:
1175            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
1176            'SELECT x FROM tbl ORDER BY x DESC'
1177
1178        Args:
1179            *expressions: the SQL code strings to parse.
1180                If a `Group` instance is passed, this is used as-is.
1181                If another `Expression` instance is passed, it will be wrapped in a `Order`.
1182            append: if `True`, add to any existing expressions.
1183                Otherwise, this flattens all the `Order` expression into a single expression.
1184            dialect: the dialect used to parse the input expression.
1185            copy: if `False`, modify this expression instance in-place.
1186            opts: other options to use to parse the input expressions.
1187
1188        Returns:
1189            The modified Select expression.
1190        """
1191        return _apply_child_list_builder(
1192            *expressions,
1193            instance=self,
1194            arg="order",
1195            append=append,
1196            copy=copy,
1197            prefix="ORDER BY",
1198            into=Order,
1199            dialect=dialect,
1200            **opts,
1201        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

ctes: List[CTE]
1203    @property
1204    def ctes(self) -> t.List[CTE]:
1205        """Returns a list of all the CTEs attached to this query."""
1206        with_ = self.args.get("with")
1207        return with_.expressions if with_ else []

Returns a list of all the CTEs attached to this query.

selects: List[Expression]
1209    @property
1210    def selects(self) -> t.List[Expression]:
1211        """Returns the query's projections."""
1212        raise NotImplementedError("Query objects must implement `selects`")

Returns the query's projections.

named_selects: List[str]
1214    @property
1215    def named_selects(self) -> t.List[str]:
1216        """Returns the output names of the query's projections."""
1217        raise NotImplementedError("Query objects must implement `named_selects`")

Returns the output names of the query's projections.

def select( self: ~Q, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1219    def select(
1220        self: Q,
1221        *expressions: t.Optional[ExpOrStr],
1222        append: bool = True,
1223        dialect: DialectType = None,
1224        copy: bool = True,
1225        **opts,
1226    ) -> Q:
1227        """
1228        Append to or set the SELECT expressions.
1229
1230        Example:
1231            >>> Select().select("x", "y").sql()
1232            'SELECT x, y'
1233
1234        Args:
1235            *expressions: the SQL code strings to parse.
1236                If an `Expression` instance is passed, it will be used as-is.
1237            append: if `True`, add to any existing expressions.
1238                Otherwise, this resets the expressions.
1239            dialect: the dialect used to parse the input expressions.
1240            copy: if `False`, modify this expression instance in-place.
1241            opts: other options to use to parse the input expressions.
1242
1243        Returns:
1244            The modified Query expression.
1245        """
1246        raise NotImplementedError("Query objects must implement `select`")

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

def where( self: ~Q, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~Q:
1248    def where(
1249        self: Q,
1250        *expressions: t.Optional[ExpOrStr],
1251        append: bool = True,
1252        dialect: DialectType = None,
1253        copy: bool = True,
1254        **opts,
1255    ) -> Q:
1256        """
1257        Append to or set the WHERE expressions.
1258
1259        Examples:
1260            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
1261            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
1262
1263        Args:
1264            *expressions: the SQL code strings to parse.
1265                If an `Expression` instance is passed, it will be used as-is.
1266                Multiple expressions are combined with an AND operator.
1267            append: if `True`, AND the new expressions to any existing expression.
1268                Otherwise, this resets the expression.
1269            dialect: the dialect used to parse the input expressions.
1270            copy: if `False`, modify this expression instance in-place.
1271            opts: other options to use to parse the input expressions.
1272
1273        Returns:
1274            The modified expression.
1275        """
1276        return _apply_conjunction_builder(
1277            *[expr.this if isinstance(expr, Where) else expr for expr in expressions],
1278            instance=self,
1279            arg="where",
1280            append=append,
1281            into=Where,
1282            dialect=dialect,
1283            copy=copy,
1284            **opts,
1285        )

Append to or set the WHERE expressions.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

def with_( self: ~Q, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, materialized: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, scalar: bool = False, **opts) -> ~Q:
1287    def with_(
1288        self: Q,
1289        alias: ExpOrStr,
1290        as_: ExpOrStr,
1291        recursive: t.Optional[bool] = None,
1292        materialized: t.Optional[bool] = None,
1293        append: bool = True,
1294        dialect: DialectType = None,
1295        copy: bool = True,
1296        scalar: bool = False,
1297        **opts,
1298    ) -> Q:
1299        """
1300        Append to or set the common table expressions.
1301
1302        Example:
1303            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
1304            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
1305
1306        Args:
1307            alias: the SQL code string to parse as the table name.
1308                If an `Expression` instance is passed, this is used as-is.
1309            as_: the SQL code string to parse as the table expression.
1310                If an `Expression` instance is passed, it will be used as-is.
1311            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1312            materialized: set the MATERIALIZED part of the expression.
1313            append: if `True`, add to any existing expressions.
1314                Otherwise, this resets the expressions.
1315            dialect: the dialect used to parse the input expression.
1316            copy: if `False`, modify this expression instance in-place.
1317            scalar: if `True`, this is a scalar common table expression.
1318            opts: other options to use to parse the input expressions.
1319
1320        Returns:
1321            The modified expression.
1322        """
1323        return _apply_cte_builder(
1324            self,
1325            alias,
1326            as_,
1327            recursive=recursive,
1328            materialized=materialized,
1329            append=append,
1330            dialect=dialect,
1331            copy=copy,
1332            scalar=scalar,
1333            **opts,
1334        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • materialized: set the MATERIALIZED part of the expression.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • scalar: if True, this is a scalar common table expression.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

def union( self, *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Union:
1336    def union(
1337        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1338    ) -> Union:
1339        """
1340        Builds a UNION expression.
1341
1342        Example:
1343            >>> import sqlglot
1344            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
1345            'SELECT * FROM foo UNION SELECT * FROM bla'
1346
1347        Args:
1348            expressions: the SQL code strings.
1349                If `Expression` instances are passed, they will be used as-is.
1350            distinct: set the DISTINCT flag if and only if this is true.
1351            dialect: the dialect used to parse the input expression.
1352            opts: other options to use to parse the input expressions.
1353
1354        Returns:
1355            The new Union expression.
1356        """
1357        return union(self, *expressions, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Intersect:
1359    def intersect(
1360        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1361    ) -> Intersect:
1362        """
1363        Builds an INTERSECT expression.
1364
1365        Example:
1366            >>> import sqlglot
1367            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
1368            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
1369
1370        Args:
1371            expressions: the SQL code strings.
1372                If `Expression` instances are passed, they will be used as-is.
1373            distinct: set the DISTINCT flag if and only if this is true.
1374            dialect: the dialect used to parse the input expression.
1375            opts: other options to use to parse the input expressions.
1376
1377        Returns:
1378            The new Intersect expression.
1379        """
1380        return intersect(self, *expressions, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Except:
1382    def except_(
1383        self, *expressions: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
1384    ) -> Except:
1385        """
1386        Builds an EXCEPT expression.
1387
1388        Example:
1389            >>> import sqlglot
1390            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
1391            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
1392
1393        Args:
1394            expressions: the SQL code strings.
1395                If `Expression` instance are passed, they will be used as-is.
1396            distinct: set the DISTINCT flag if and only if this is true.
1397            dialect: the dialect used to parse the input expression.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            The new Except expression.
1402        """
1403        return except_(self, *expressions, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings. If Expression instance are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

key = 'query'
class UDTF(DerivedTable):
1406class UDTF(DerivedTable):
1407    @property
1408    def selects(self) -> t.List[Expression]:
1409        alias = self.args.get("alias")
1410        return alias.columns if alias else []
selects: List[Expression]
1407    @property
1408    def selects(self) -> t.List[Expression]:
1409        alias = self.args.get("alias")
1410        return alias.columns if alias else []
key = 'udtf'
class Cache(Expression):
1413class Cache(Expression):
1414    arg_types = {
1415        "this": True,
1416        "lazy": False,
1417        "options": False,
1418        "expression": False,
1419    }
arg_types = {'this': True, 'lazy': False, 'options': False, 'expression': False}
key = 'cache'
class Uncache(Expression):
1422class Uncache(Expression):
1423    arg_types = {"this": True, "exists": False}
arg_types = {'this': True, 'exists': False}
key = 'uncache'
class Refresh(Expression):
1426class Refresh(Expression):
1427    pass
key = 'refresh'
class DDL(Expression):
1430class DDL(Expression):
1431    @property
1432    def ctes(self) -> t.List[CTE]:
1433        """Returns a list of all the CTEs attached to this statement."""
1434        with_ = self.args.get("with")
1435        return with_.expressions if with_ else []
1436
1437    @property
1438    def selects(self) -> t.List[Expression]:
1439        """If this statement contains a query (e.g. a CTAS), this returns the query's projections."""
1440        return self.expression.selects if isinstance(self.expression, Query) else []
1441
1442    @property
1443    def named_selects(self) -> t.List[str]:
1444        """
1445        If this statement contains a query (e.g. a CTAS), this returns the output
1446        names of the query's projections.
1447        """
1448        return self.expression.named_selects if isinstance(self.expression, Query) else []
ctes: List[CTE]
1431    @property
1432    def ctes(self) -> t.List[CTE]:
1433        """Returns a list of all the CTEs attached to this statement."""
1434        with_ = self.args.get("with")
1435        return with_.expressions if with_ else []

Returns a list of all the CTEs attached to this statement.

selects: List[Expression]
1437    @property
1438    def selects(self) -> t.List[Expression]:
1439        """If this statement contains a query (e.g. a CTAS), this returns the query's projections."""
1440        return self.expression.selects if isinstance(self.expression, Query) else []

If this statement contains a query (e.g. a CTAS), this returns the query's projections.

named_selects: List[str]
1442    @property
1443    def named_selects(self) -> t.List[str]:
1444        """
1445        If this statement contains a query (e.g. a CTAS), this returns the output
1446        names of the query's projections.
1447        """
1448        return self.expression.named_selects if isinstance(self.expression, Query) else []

If this statement contains a query (e.g. a CTAS), this returns the output names of the query's projections.

key = 'ddl'
class DML(Expression):
1451class DML(Expression):
1452    def returning(
1453        self,
1454        expression: ExpOrStr,
1455        dialect: DialectType = None,
1456        copy: bool = True,
1457        **opts,
1458    ) -> "Self":
1459        """
1460        Set the RETURNING expression. Not supported by all dialects.
1461
1462        Example:
1463            >>> delete("tbl").returning("*", dialect="postgres").sql()
1464            'DELETE FROM tbl RETURNING *'
1465
1466        Args:
1467            expression: the SQL code strings to parse.
1468                If an `Expression` instance is passed, it will be used as-is.
1469            dialect: the dialect used to parse the input expressions.
1470            copy: if `False`, modify this expression instance in-place.
1471            opts: other options to use to parse the input expressions.
1472
1473        Returns:
1474            Delete: the modified expression.
1475        """
1476        return _apply_builder(
1477            expression=expression,
1478            instance=self,
1479            arg="returning",
1480            prefix="RETURNING",
1481            dialect=dialect,
1482            copy=copy,
1483            into=Returning,
1484            **opts,
1485        )
def returning( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> typing_extensions.Self:
1452    def returning(
1453        self,
1454        expression: ExpOrStr,
1455        dialect: DialectType = None,
1456        copy: bool = True,
1457        **opts,
1458    ) -> "Self":
1459        """
1460        Set the RETURNING expression. Not supported by all dialects.
1461
1462        Example:
1463            >>> delete("tbl").returning("*", dialect="postgres").sql()
1464            'DELETE FROM tbl RETURNING *'
1465
1466        Args:
1467            expression: the SQL code strings to parse.
1468                If an `Expression` instance is passed, it will be used as-is.
1469            dialect: the dialect used to parse the input expressions.
1470            copy: if `False`, modify this expression instance in-place.
1471            opts: other options to use to parse the input expressions.
1472
1473        Returns:
1474            Delete: the modified expression.
1475        """
1476        return _apply_builder(
1477            expression=expression,
1478            instance=self,
1479            arg="returning",
1480            prefix="RETURNING",
1481            dialect=dialect,
1482            copy=copy,
1483            into=Returning,
1484            **opts,
1485        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

key = 'dml'
class Create(DDL):
1488class Create(DDL):
1489    arg_types = {
1490        "with": False,
1491        "this": True,
1492        "kind": True,
1493        "expression": False,
1494        "exists": False,
1495        "properties": False,
1496        "replace": False,
1497        "refresh": False,
1498        "unique": False,
1499        "indexes": False,
1500        "no_schema_binding": False,
1501        "begin": False,
1502        "end": False,
1503        "clone": False,
1504        "concurrently": False,
1505        "clustered": False,
1506    }
1507
1508    @property
1509    def kind(self) -> t.Optional[str]:
1510        kind = self.args.get("kind")
1511        return kind and kind.upper()
arg_types = {'with': False, 'this': True, 'kind': True, 'expression': False, 'exists': False, 'properties': False, 'replace': False, 'refresh': False, 'unique': False, 'indexes': False, 'no_schema_binding': False, 'begin': False, 'end': False, 'clone': False, 'concurrently': False, 'clustered': False}
kind: Optional[str]
1508    @property
1509    def kind(self) -> t.Optional[str]:
1510        kind = self.args.get("kind")
1511        return kind and kind.upper()
key = 'create'
class SequenceProperties(Expression):
1514class SequenceProperties(Expression):
1515    arg_types = {
1516        "increment": False,
1517        "minvalue": False,
1518        "maxvalue": False,
1519        "cache": False,
1520        "start": False,
1521        "owned": False,
1522        "options": False,
1523    }
arg_types = {'increment': False, 'minvalue': False, 'maxvalue': False, 'cache': False, 'start': False, 'owned': False, 'options': False}
key = 'sequenceproperties'
class TruncateTable(Expression):
1526class TruncateTable(Expression):
1527    arg_types = {
1528        "expressions": True,
1529        "is_database": False,
1530        "exists": False,
1531        "only": False,
1532        "cluster": False,
1533        "identity": False,
1534        "option": False,
1535        "partition": False,
1536    }
arg_types = {'expressions': True, 'is_database': False, 'exists': False, 'only': False, 'cluster': False, 'identity': False, 'option': False, 'partition': False}
key = 'truncatetable'
class Clone(Expression):
1542class Clone(Expression):
1543    arg_types = {"this": True, "shallow": False, "copy": False}
arg_types = {'this': True, 'shallow': False, 'copy': False}
key = 'clone'
class Describe(Expression):
1546class Describe(Expression):
1547    arg_types = {
1548        "this": True,
1549        "style": False,
1550        "kind": False,
1551        "expressions": False,
1552        "partition": False,
1553        "format": False,
1554    }
arg_types = {'this': True, 'style': False, 'kind': False, 'expressions': False, 'partition': False, 'format': False}
key = 'describe'
class Attach(Expression):
1558class Attach(Expression):
1559    arg_types = {"this": True, "exists": False, "expressions": False}
arg_types = {'this': True, 'exists': False, 'expressions': False}
key = 'attach'
class Detach(Expression):
1563class Detach(Expression):
1564    arg_types = {"this": True, "exists": False}
arg_types = {'this': True, 'exists': False}
key = 'detach'
class Summarize(Expression):
1568class Summarize(Expression):
1569    arg_types = {"this": True, "table": False}
arg_types = {'this': True, 'table': False}
key = 'summarize'
class Kill(Expression):
1572class Kill(Expression):
1573    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'kill'
class Pragma(Expression):
1576class Pragma(Expression):
1577    pass
key = 'pragma'
class Declare(Expression):
1580class Declare(Expression):
1581    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'declare'
class DeclareItem(Expression):
1584class DeclareItem(Expression):
1585    arg_types = {"this": True, "kind": True, "default": False}
arg_types = {'this': True, 'kind': True, 'default': False}
key = 'declareitem'
class Set(Expression):
1588class Set(Expression):
1589    arg_types = {"expressions": False, "unset": False, "tag": False}
arg_types = {'expressions': False, 'unset': False, 'tag': False}
key = 'set'
class Heredoc(Expression):
1592class Heredoc(Expression):
1593    arg_types = {"this": True, "tag": False}
arg_types = {'this': True, 'tag': False}
key = 'heredoc'
class SetItem(Expression):
1596class SetItem(Expression):
1597    arg_types = {
1598        "this": False,
1599        "expressions": False,
1600        "kind": False,
1601        "collate": False,  # MySQL SET NAMES statement
1602        "global": False,
1603    }
arg_types = {'this': False, 'expressions': False, 'kind': False, 'collate': False, 'global': False}
key = 'setitem'
class Show(Expression):
1606class Show(Expression):
1607    arg_types = {
1608        "this": True,
1609        "history": False,
1610        "terse": False,
1611        "target": False,
1612        "offset": False,
1613        "starts_with": False,
1614        "limit": False,
1615        "from": False,
1616        "like": False,
1617        "where": False,
1618        "db": False,
1619        "scope": False,
1620        "scope_kind": False,
1621        "full": False,
1622        "mutex": False,
1623        "query": False,
1624        "channel": False,
1625        "global": False,
1626        "log": False,
1627        "position": False,
1628        "types": False,
1629        "privileges": False,
1630    }
arg_types = {'this': True, 'history': False, 'terse': False, 'target': False, 'offset': False, 'starts_with': False, 'limit': False, 'from': False, 'like': False, 'where': False, 'db': False, 'scope': False, 'scope_kind': False, 'full': False, 'mutex': False, 'query': False, 'channel': False, 'global': False, 'log': False, 'position': False, 'types': False, 'privileges': False}
key = 'show'
class UserDefinedFunction(Expression):
1633class UserDefinedFunction(Expression):
1634    arg_types = {"this": True, "expressions": False, "wrapped": False}
arg_types = {'this': True, 'expressions': False, 'wrapped': False}
key = 'userdefinedfunction'
class CharacterSet(Expression):
1637class CharacterSet(Expression):
1638    arg_types = {"this": True, "default": False}
arg_types = {'this': True, 'default': False}
key = 'characterset'
class RecursiveWithSearch(Expression):
1641class RecursiveWithSearch(Expression):
1642    arg_types = {"kind": True, "this": True, "expression": True, "using": False}
arg_types = {'kind': True, 'this': True, 'expression': True, 'using': False}
key = 'recursivewithsearch'
class With(Expression):
1645class With(Expression):
1646    arg_types = {"expressions": True, "recursive": False, "search": False}
1647
1648    @property
1649    def recursive(self) -> bool:
1650        return bool(self.args.get("recursive"))
arg_types = {'expressions': True, 'recursive': False, 'search': False}
recursive: bool
1648    @property
1649    def recursive(self) -> bool:
1650        return bool(self.args.get("recursive"))
key = 'with'
class WithinGroup(Expression):
1653class WithinGroup(Expression):
1654    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'withingroup'
class CTE(DerivedTable):
1659class CTE(DerivedTable):
1660    arg_types = {
1661        "this": True,
1662        "alias": True,
1663        "scalar": False,
1664        "materialized": False,
1665    }
arg_types = {'this': True, 'alias': True, 'scalar': False, 'materialized': False}
key = 'cte'
class ProjectionDef(Expression):
1668class ProjectionDef(Expression):
1669    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'projectiondef'
class TableAlias(Expression):
1672class TableAlias(Expression):
1673    arg_types = {"this": False, "columns": False}
1674
1675    @property
1676    def columns(self):
1677        return self.args.get("columns") or []
arg_types = {'this': False, 'columns': False}
columns
1675    @property
1676    def columns(self):
1677        return self.args.get("columns") or []
key = 'tablealias'
class BitString(Condition):
1680class BitString(Condition):
1681    pass
key = 'bitstring'
class HexString(Condition):
1684class HexString(Condition):
1685    arg_types = {"this": True, "is_integer": False}
arg_types = {'this': True, 'is_integer': False}
key = 'hexstring'
class ByteString(Condition):
1688class ByteString(Condition):
1689    pass
key = 'bytestring'
class RawString(Condition):
1692class RawString(Condition):
1693    pass
key = 'rawstring'
class UnicodeString(Condition):
1696class UnicodeString(Condition):
1697    arg_types = {"this": True, "escape": False}
arg_types = {'this': True, 'escape': False}
key = 'unicodestring'
class Column(Condition):
1700class Column(Condition):
1701    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1702
1703    @property
1704    def table(self) -> str:
1705        return self.text("table")
1706
1707    @property
1708    def db(self) -> str:
1709        return self.text("db")
1710
1711    @property
1712    def catalog(self) -> str:
1713        return self.text("catalog")
1714
1715    @property
1716    def output_name(self) -> str:
1717        return self.name
1718
1719    @property
1720    def parts(self) -> t.List[Identifier]:
1721        """Return the parts of a column in order catalog, db, table, name."""
1722        return [
1723            t.cast(Identifier, self.args[part])
1724            for part in ("catalog", "db", "table", "this")
1725            if self.args.get(part)
1726        ]
1727
1728    def to_dot(self, include_dots: bool = True) -> Dot | Identifier:
1729        """Converts the column into a dot expression."""
1730        parts = self.parts
1731        parent = self.parent
1732
1733        if include_dots:
1734            while isinstance(parent, Dot):
1735                parts.append(parent.expression)
1736                parent = parent.parent
1737
1738        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
arg_types = {'this': True, 'table': False, 'db': False, 'catalog': False, 'join_mark': False}
table: str
1703    @property
1704    def table(self) -> str:
1705        return self.text("table")
db: str
1707    @property
1708    def db(self) -> str:
1709        return self.text("db")
catalog: str
1711    @property
1712    def catalog(self) -> str:
1713        return self.text("catalog")
output_name: str
1715    @property
1716    def output_name(self) -> str:
1717        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
parts: List[Identifier]
1719    @property
1720    def parts(self) -> t.List[Identifier]:
1721        """Return the parts of a column in order catalog, db, table, name."""
1722        return [
1723            t.cast(Identifier, self.args[part])
1724            for part in ("catalog", "db", "table", "this")
1725            if self.args.get(part)
1726        ]

Return the parts of a column in order catalog, db, table, name.

def to_dot( self, include_dots: bool = True) -> Dot | Identifier:
1728    def to_dot(self, include_dots: bool = True) -> Dot | Identifier:
1729        """Converts the column into a dot expression."""
1730        parts = self.parts
1731        parent = self.parent
1732
1733        if include_dots:
1734            while isinstance(parent, Dot):
1735                parts.append(parent.expression)
1736                parent = parent.parent
1737
1738        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]

Converts the column into a dot expression.

key = 'column'
class ColumnPosition(Expression):
1741class ColumnPosition(Expression):
1742    arg_types = {"this": False, "position": True}
arg_types = {'this': False, 'position': True}
key = 'columnposition'
class ColumnDef(Expression):
1745class ColumnDef(Expression):
1746    arg_types = {
1747        "this": True,
1748        "kind": False,
1749        "constraints": False,
1750        "exists": False,
1751        "position": False,
1752        "default": False,
1753        "output": False,
1754    }
1755
1756    @property
1757    def constraints(self) -> t.List[ColumnConstraint]:
1758        return self.args.get("constraints") or []
1759
1760    @property
1761    def kind(self) -> t.Optional[DataType]:
1762        return self.args.get("kind")
arg_types = {'this': True, 'kind': False, 'constraints': False, 'exists': False, 'position': False, 'default': False, 'output': False}
constraints: List[ColumnConstraint]
1756    @property
1757    def constraints(self) -> t.List[ColumnConstraint]:
1758        return self.args.get("constraints") or []
kind: Optional[DataType]
1760    @property
1761    def kind(self) -> t.Optional[DataType]:
1762        return self.args.get("kind")
key = 'columndef'
class AlterColumn(Expression):
1765class AlterColumn(Expression):
1766    arg_types = {
1767        "this": True,
1768        "dtype": False,
1769        "collate": False,
1770        "using": False,
1771        "default": False,
1772        "drop": False,
1773        "comment": False,
1774        "allow_null": False,
1775        "visible": False,
1776    }
arg_types = {'this': True, 'dtype': False, 'collate': False, 'using': False, 'default': False, 'drop': False, 'comment': False, 'allow_null': False, 'visible': False}
key = 'altercolumn'
class AlterIndex(Expression):
1780class AlterIndex(Expression):
1781    arg_types = {"this": True, "visible": True}
arg_types = {'this': True, 'visible': True}
key = 'alterindex'
class AlterDistStyle(Expression):
1785class AlterDistStyle(Expression):
1786    pass
key = 'alterdiststyle'
class AlterSortKey(Expression):
1789class AlterSortKey(Expression):
1790    arg_types = {"this": False, "expressions": False, "compound": False}
arg_types = {'this': False, 'expressions': False, 'compound': False}
key = 'altersortkey'
class AlterSet(Expression):
1793class AlterSet(Expression):
1794    arg_types = {
1795        "expressions": False,
1796        "option": False,
1797        "tablespace": False,
1798        "access_method": False,
1799        "file_format": False,
1800        "copy_options": False,
1801        "tag": False,
1802        "location": False,
1803        "serde": False,
1804    }
arg_types = {'expressions': False, 'option': False, 'tablespace': False, 'access_method': False, 'file_format': False, 'copy_options': False, 'tag': False, 'location': False, 'serde': False}
key = 'alterset'
class RenameColumn(Expression):
1807class RenameColumn(Expression):
1808    arg_types = {"this": True, "to": True, "exists": False}
arg_types = {'this': True, 'to': True, 'exists': False}
key = 'renamecolumn'
class AlterRename(Expression):
1811class AlterRename(Expression):
1812    pass
key = 'alterrename'
class SwapTable(Expression):
1815class SwapTable(Expression):
1816    pass
key = 'swaptable'
class Comment(Expression):
1819class Comment(Expression):
1820    arg_types = {
1821        "this": True,
1822        "kind": True,
1823        "expression": True,
1824        "exists": False,
1825        "materialized": False,
1826    }
arg_types = {'this': True, 'kind': True, 'expression': True, 'exists': False, 'materialized': False}
key = 'comment'
class Comprehension(Expression):
1829class Comprehension(Expression):
1830    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
arg_types = {'this': True, 'expression': True, 'iterator': True, 'condition': False}
key = 'comprehension'
class MergeTreeTTLAction(Expression):
1834class MergeTreeTTLAction(Expression):
1835    arg_types = {
1836        "this": True,
1837        "delete": False,
1838        "recompress": False,
1839        "to_disk": False,
1840        "to_volume": False,
1841    }
arg_types = {'this': True, 'delete': False, 'recompress': False, 'to_disk': False, 'to_volume': False}
key = 'mergetreettlaction'
class MergeTreeTTL(Expression):
1845class MergeTreeTTL(Expression):
1846    arg_types = {
1847        "expressions": True,
1848        "where": False,
1849        "group": False,
1850        "aggregates": False,
1851    }
arg_types = {'expressions': True, 'where': False, 'group': False, 'aggregates': False}
key = 'mergetreettl'
class IndexConstraintOption(Expression):
1855class IndexConstraintOption(Expression):
1856    arg_types = {
1857        "key_block_size": False,
1858        "using": False,
1859        "parser": False,
1860        "comment": False,
1861        "visible": False,
1862        "engine_attr": False,
1863        "secondary_engine_attr": False,
1864    }
arg_types = {'key_block_size': False, 'using': False, 'parser': False, 'comment': False, 'visible': False, 'engine_attr': False, 'secondary_engine_attr': False}
key = 'indexconstraintoption'
class ColumnConstraint(Expression):
1867class ColumnConstraint(Expression):
1868    arg_types = {"this": False, "kind": True}
1869
1870    @property
1871    def kind(self) -> ColumnConstraintKind:
1872        return self.args["kind"]
arg_types = {'this': False, 'kind': True}
kind: ColumnConstraintKind
1870    @property
1871    def kind(self) -> ColumnConstraintKind:
1872        return self.args["kind"]
key = 'columnconstraint'
class ColumnConstraintKind(Expression):
1875class ColumnConstraintKind(Expression):
1876    pass
key = 'columnconstraintkind'
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1879class AutoIncrementColumnConstraint(ColumnConstraintKind):
1880    pass
key = 'autoincrementcolumnconstraint'
class PeriodForSystemTimeConstraint(ColumnConstraintKind):
1883class PeriodForSystemTimeConstraint(ColumnConstraintKind):
1884    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'periodforsystemtimeconstraint'
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1887class CaseSpecificColumnConstraint(ColumnConstraintKind):
1888    arg_types = {"not_": True}
arg_types = {'not_': True}
key = 'casespecificcolumnconstraint'
class CharacterSetColumnConstraint(ColumnConstraintKind):
1891class CharacterSetColumnConstraint(ColumnConstraintKind):
1892    arg_types = {"this": True}
arg_types = {'this': True}
key = 'charactersetcolumnconstraint'
class CheckColumnConstraint(ColumnConstraintKind):
1895class CheckColumnConstraint(ColumnConstraintKind):
1896    arg_types = {"this": True, "enforced": False}
arg_types = {'this': True, 'enforced': False}
key = 'checkcolumnconstraint'
class ClusteredColumnConstraint(ColumnConstraintKind):
1899class ClusteredColumnConstraint(ColumnConstraintKind):
1900    pass
key = 'clusteredcolumnconstraint'
class CollateColumnConstraint(ColumnConstraintKind):
1903class CollateColumnConstraint(ColumnConstraintKind):
1904    pass
key = 'collatecolumnconstraint'
class CommentColumnConstraint(ColumnConstraintKind):
1907class CommentColumnConstraint(ColumnConstraintKind):
1908    pass
key = 'commentcolumnconstraint'
class CompressColumnConstraint(ColumnConstraintKind):
1911class CompressColumnConstraint(ColumnConstraintKind):
1912    arg_types = {"this": False}
arg_types = {'this': False}
key = 'compresscolumnconstraint'
class DateFormatColumnConstraint(ColumnConstraintKind):
1915class DateFormatColumnConstraint(ColumnConstraintKind):
1916    arg_types = {"this": True}
arg_types = {'this': True}
key = 'dateformatcolumnconstraint'
class DefaultColumnConstraint(ColumnConstraintKind):
1919class DefaultColumnConstraint(ColumnConstraintKind):
1920    pass
key = 'defaultcolumnconstraint'
class EncodeColumnConstraint(ColumnConstraintKind):
1923class EncodeColumnConstraint(ColumnConstraintKind):
1924    pass
key = 'encodecolumnconstraint'
class ExcludeColumnConstraint(ColumnConstraintKind):
1928class ExcludeColumnConstraint(ColumnConstraintKind):
1929    pass
key = 'excludecolumnconstraint'
class EphemeralColumnConstraint(ColumnConstraintKind):
1932class EphemeralColumnConstraint(ColumnConstraintKind):
1933    arg_types = {"this": False}
arg_types = {'this': False}
key = 'ephemeralcolumnconstraint'
class WithOperator(Expression):
1936class WithOperator(Expression):
1937    arg_types = {"this": True, "op": True}
arg_types = {'this': True, 'op': True}
key = 'withoperator'
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1940class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1941    # this: True -> ALWAYS, this: False -> BY DEFAULT
1942    arg_types = {
1943        "this": False,
1944        "expression": False,
1945        "on_null": False,
1946        "start": False,
1947        "increment": False,
1948        "minvalue": False,
1949        "maxvalue": False,
1950        "cycle": False,
1951        "order": False,
1952    }
arg_types = {'this': False, 'expression': False, 'on_null': False, 'start': False, 'increment': False, 'minvalue': False, 'maxvalue': False, 'cycle': False, 'order': False}
key = 'generatedasidentitycolumnconstraint'
class GeneratedAsRowColumnConstraint(ColumnConstraintKind):
1955class GeneratedAsRowColumnConstraint(ColumnConstraintKind):
1956    arg_types = {"start": False, "hidden": False}
arg_types = {'start': False, 'hidden': False}
key = 'generatedasrowcolumnconstraint'
class IndexColumnConstraint(ColumnConstraintKind):
1961class IndexColumnConstraint(ColumnConstraintKind):
1962    arg_types = {
1963        "this": False,
1964        "expressions": False,
1965        "kind": False,
1966        "index_type": False,
1967        "options": False,
1968        "expression": False,  # Clickhouse
1969        "granularity": False,
1970    }
arg_types = {'this': False, 'expressions': False, 'kind': False, 'index_type': False, 'options': False, 'expression': False, 'granularity': False}
key = 'indexcolumnconstraint'
class InlineLengthColumnConstraint(ColumnConstraintKind):
1973class InlineLengthColumnConstraint(ColumnConstraintKind):
1974    pass
key = 'inlinelengthcolumnconstraint'
class NonClusteredColumnConstraint(ColumnConstraintKind):
1977class NonClusteredColumnConstraint(ColumnConstraintKind):
1978    pass
key = 'nonclusteredcolumnconstraint'
class NotForReplicationColumnConstraint(ColumnConstraintKind):
1981class NotForReplicationColumnConstraint(ColumnConstraintKind):
1982    arg_types = {}
arg_types = {}
key = 'notforreplicationcolumnconstraint'
class MaskingPolicyColumnConstraint(ColumnConstraintKind):
1986class MaskingPolicyColumnConstraint(ColumnConstraintKind):
1987    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'maskingpolicycolumnconstraint'
class NotNullColumnConstraint(ColumnConstraintKind):
1990class NotNullColumnConstraint(ColumnConstraintKind):
1991    arg_types = {"allow_null": False}
arg_types = {'allow_null': False}
key = 'notnullcolumnconstraint'
class OnUpdateColumnConstraint(ColumnConstraintKind):
1995class OnUpdateColumnConstraint(ColumnConstraintKind):
1996    pass
key = 'onupdatecolumnconstraint'
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1999class PrimaryKeyColumnConstraint(ColumnConstraintKind):
2000    arg_types = {"desc": False, "options": False}
arg_types = {'desc': False, 'options': False}
key = 'primarykeycolumnconstraint'
class TitleColumnConstraint(ColumnConstraintKind):
2003class TitleColumnConstraint(ColumnConstraintKind):
2004    pass
key = 'titlecolumnconstraint'
class UniqueColumnConstraint(ColumnConstraintKind):
2007class UniqueColumnConstraint(ColumnConstraintKind):
2008    arg_types = {
2009        "this": False,
2010        "index_type": False,
2011        "on_conflict": False,
2012        "nulls": False,
2013        "options": False,
2014    }
arg_types = {'this': False, 'index_type': False, 'on_conflict': False, 'nulls': False, 'options': False}
key = 'uniquecolumnconstraint'
class UppercaseColumnConstraint(ColumnConstraintKind):
2017class UppercaseColumnConstraint(ColumnConstraintKind):
2018    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'uppercasecolumnconstraint'
class WatermarkColumnConstraint(Expression):
2022class WatermarkColumnConstraint(Expression):
2023    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'watermarkcolumnconstraint'
class PathColumnConstraint(ColumnConstraintKind):
2026class PathColumnConstraint(ColumnConstraintKind):
2027    pass
key = 'pathcolumnconstraint'
class ProjectionPolicyColumnConstraint(ColumnConstraintKind):
2031class ProjectionPolicyColumnConstraint(ColumnConstraintKind):
2032    pass
key = 'projectionpolicycolumnconstraint'
class ComputedColumnConstraint(ColumnConstraintKind):
2037class ComputedColumnConstraint(ColumnConstraintKind):
2038    arg_types = {"this": True, "persisted": False, "not_null": False}
arg_types = {'this': True, 'persisted': False, 'not_null': False}
key = 'computedcolumnconstraint'
class Constraint(Expression):
2041class Constraint(Expression):
2042    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'constraint'
class Delete(DML):
2045class Delete(DML):
2046    arg_types = {
2047        "with": False,
2048        "this": False,
2049        "using": False,
2050        "where": False,
2051        "returning": False,
2052        "limit": False,
2053        "tables": False,  # Multiple-Table Syntax (MySQL)
2054        "cluster": False,  # Clickhouse
2055    }
2056
2057    def delete(
2058        self,
2059        table: ExpOrStr,
2060        dialect: DialectType = None,
2061        copy: bool = True,
2062        **opts,
2063    ) -> Delete:
2064        """
2065        Create a DELETE expression or replace the table on an existing DELETE expression.
2066
2067        Example:
2068            >>> delete("tbl").sql()
2069            'DELETE FROM tbl'
2070
2071        Args:
2072            table: the table from which to delete.
2073            dialect: the dialect used to parse the input expression.
2074            copy: if `False`, modify this expression instance in-place.
2075            opts: other options to use to parse the input expressions.
2076
2077        Returns:
2078            Delete: the modified expression.
2079        """
2080        return _apply_builder(
2081            expression=table,
2082            instance=self,
2083            arg="this",
2084            dialect=dialect,
2085            into=Table,
2086            copy=copy,
2087            **opts,
2088        )
2089
2090    def where(
2091        self,
2092        *expressions: t.Optional[ExpOrStr],
2093        append: bool = True,
2094        dialect: DialectType = None,
2095        copy: bool = True,
2096        **opts,
2097    ) -> Delete:
2098        """
2099        Append to or set the WHERE expressions.
2100
2101        Example:
2102            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
2103            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
2104
2105        Args:
2106            *expressions: the SQL code strings to parse.
2107                If an `Expression` instance is passed, it will be used as-is.
2108                Multiple expressions are combined with an AND operator.
2109            append: if `True`, AND the new expressions to any existing expression.
2110                Otherwise, this resets the expression.
2111            dialect: the dialect used to parse the input expressions.
2112            copy: if `False`, modify this expression instance in-place.
2113            opts: other options to use to parse the input expressions.
2114
2115        Returns:
2116            Delete: the modified expression.
2117        """
2118        return _apply_conjunction_builder(
2119            *expressions,
2120            instance=self,
2121            arg="where",
2122            append=append,
2123            into=Where,
2124            dialect=dialect,
2125            copy=copy,
2126            **opts,
2127        )
arg_types = {'with': False, 'this': False, 'using': False, 'where': False, 'returning': False, 'limit': False, 'tables': False, 'cluster': False}
def delete( self, table: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
2057    def delete(
2058        self,
2059        table: ExpOrStr,
2060        dialect: DialectType = None,
2061        copy: bool = True,
2062        **opts,
2063    ) -> Delete:
2064        """
2065        Create a DELETE expression or replace the table on an existing DELETE expression.
2066
2067        Example:
2068            >>> delete("tbl").sql()
2069            'DELETE FROM tbl'
2070
2071        Args:
2072            table: the table from which to delete.
2073            dialect: the dialect used to parse the input expression.
2074            copy: if `False`, modify this expression instance in-place.
2075            opts: other options to use to parse the input expressions.
2076
2077        Returns:
2078            Delete: the modified expression.
2079        """
2080        return _apply_builder(
2081            expression=table,
2082            instance=self,
2083            arg="this",
2084            dialect=dialect,
2085            into=Table,
2086            copy=copy,
2087            **opts,
2088        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
2090    def where(
2091        self,
2092        *expressions: t.Optional[ExpOrStr],
2093        append: bool = True,
2094        dialect: DialectType = None,
2095        copy: bool = True,
2096        **opts,
2097    ) -> Delete:
2098        """
2099        Append to or set the WHERE expressions.
2100
2101        Example:
2102            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
2103            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
2104
2105        Args:
2106            *expressions: the SQL code strings to parse.
2107                If an `Expression` instance is passed, it will be used as-is.
2108                Multiple expressions are combined with an AND operator.
2109            append: if `True`, AND the new expressions to any existing expression.
2110                Otherwise, this resets the expression.
2111            dialect: the dialect used to parse the input expressions.
2112            copy: if `False`, modify this expression instance in-place.
2113            opts: other options to use to parse the input expressions.
2114
2115        Returns:
2116            Delete: the modified expression.
2117        """
2118        return _apply_conjunction_builder(
2119            *expressions,
2120            instance=self,
2121            arg="where",
2122            append=append,
2123            into=Where,
2124            dialect=dialect,
2125            copy=copy,
2126            **opts,
2127        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

key = 'delete'
class Drop(Expression):
2130class Drop(Expression):
2131    arg_types = {
2132        "this": False,
2133        "kind": False,
2134        "expressions": False,
2135        "exists": False,
2136        "temporary": False,
2137        "materialized": False,
2138        "cascade": False,
2139        "constraints": False,
2140        "purge": False,
2141        "cluster": False,
2142        "concurrently": False,
2143    }
2144
2145    @property
2146    def kind(self) -> t.Optional[str]:
2147        kind = self.args.get("kind")
2148        return kind and kind.upper()
arg_types = {'this': False, 'kind': False, 'expressions': False, 'exists': False, 'temporary': False, 'materialized': False, 'cascade': False, 'constraints': False, 'purge': False, 'cluster': False, 'concurrently': False}
kind: Optional[str]
2145    @property
2146    def kind(self) -> t.Optional[str]:
2147        kind = self.args.get("kind")
2148        return kind and kind.upper()
key = 'drop'
class Export(Expression):
2152class Export(Expression):
2153    arg_types = {"this": True, "connection": False, "options": True}
arg_types = {'this': True, 'connection': False, 'options': True}
key = 'export'
class Filter(Expression):
2156class Filter(Expression):
2157    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'filter'
class Check(Expression):
2160class Check(Expression):
2161    pass
key = 'check'
class Changes(Expression):
2164class Changes(Expression):
2165    arg_types = {"information": True, "at_before": False, "end": False}
arg_types = {'information': True, 'at_before': False, 'end': False}
key = 'changes'
class Connect(Expression):
2169class Connect(Expression):
2170    arg_types = {"start": False, "connect": True, "nocycle": False}
arg_types = {'start': False, 'connect': True, 'nocycle': False}
key = 'connect'
class CopyParameter(Expression):
2173class CopyParameter(Expression):
2174    arg_types = {"this": True, "expression": False, "expressions": False}
arg_types = {'this': True, 'expression': False, 'expressions': False}
key = 'copyparameter'
class Copy(DML):
2177class Copy(DML):
2178    arg_types = {
2179        "this": True,
2180        "kind": True,
2181        "files": True,
2182        "credentials": False,
2183        "format": False,
2184        "params": False,
2185    }
arg_types = {'this': True, 'kind': True, 'files': True, 'credentials': False, 'format': False, 'params': False}
key = 'copy'
class Credentials(Expression):
2188class Credentials(Expression):
2189    arg_types = {
2190        "credentials": False,
2191        "encryption": False,
2192        "storage": False,
2193        "iam_role": False,
2194        "region": False,
2195    }
arg_types = {'credentials': False, 'encryption': False, 'storage': False, 'iam_role': False, 'region': False}
key = 'credentials'
class Prior(Expression):
2198class Prior(Expression):
2199    pass
key = 'prior'
class Directory(Expression):
2202class Directory(Expression):
2203    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
2204    arg_types = {"this": True, "local": False, "row_format": False}
arg_types = {'this': True, 'local': False, 'row_format': False}
key = 'directory'
class ForeignKey(Expression):
2207class ForeignKey(Expression):
2208    arg_types = {
2209        "expressions": False,
2210        "reference": False,
2211        "delete": False,
2212        "update": False,
2213        "options": False,
2214    }
arg_types = {'expressions': False, 'reference': False, 'delete': False, 'update': False, 'options': False}
key = 'foreignkey'
class ColumnPrefix(Expression):
2217class ColumnPrefix(Expression):
2218    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'columnprefix'
class PrimaryKey(Expression):
2221class PrimaryKey(Expression):
2222    arg_types = {"expressions": True, "options": False}
arg_types = {'expressions': True, 'options': False}
key = 'primarykey'
class Into(Expression):
2227class Into(Expression):
2228    arg_types = {
2229        "this": False,
2230        "temporary": False,
2231        "unlogged": False,
2232        "bulk_collect": False,
2233        "expressions": False,
2234    }
arg_types = {'this': False, 'temporary': False, 'unlogged': False, 'bulk_collect': False, 'expressions': False}
key = 'into'
class From(Expression):
2237class From(Expression):
2238    @property
2239    def name(self) -> str:
2240        return self.this.name
2241
2242    @property
2243    def alias_or_name(self) -> str:
2244        return self.this.alias_or_name
name: str
2238    @property
2239    def name(self) -> str:
2240        return self.this.name
alias_or_name: str
2242    @property
2243    def alias_or_name(self) -> str:
2244        return self.this.alias_or_name
key = 'from'
class Having(Expression):
2247class Having(Expression):
2248    pass
key = 'having'
class Hint(Expression):
2251class Hint(Expression):
2252    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'hint'
class JoinHint(Expression):
2255class JoinHint(Expression):
2256    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'joinhint'
class Identifier(Expression):
2259class Identifier(Expression):
2260    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
2261
2262    @property
2263    def quoted(self) -> bool:
2264        return bool(self.args.get("quoted"))
2265
2266    @property
2267    def hashable_args(self) -> t.Any:
2268        return (self.this, self.quoted)
2269
2270    @property
2271    def output_name(self) -> str:
2272        return self.name
arg_types = {'this': True, 'quoted': False, 'global': False, 'temporary': False}
quoted: bool
2262    @property
2263    def quoted(self) -> bool:
2264        return bool(self.args.get("quoted"))
hashable_args: Any
2266    @property
2267    def hashable_args(self) -> t.Any:
2268        return (self.this, self.quoted)
output_name: str
2270    @property
2271    def output_name(self) -> str:
2272        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'identifier'
class Opclass(Expression):
2276class Opclass(Expression):
2277    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'opclass'
class Index(Expression):
2280class Index(Expression):
2281    arg_types = {
2282        "this": False,
2283        "table": False,
2284        "unique": False,
2285        "primary": False,
2286        "amp": False,  # teradata
2287        "params": False,
2288    }
arg_types = {'this': False, 'table': False, 'unique': False, 'primary': False, 'amp': False, 'params': False}
key = 'index'
class IndexParameters(Expression):
2291class IndexParameters(Expression):
2292    arg_types = {
2293        "using": False,
2294        "include": False,
2295        "columns": False,
2296        "with_storage": False,
2297        "partition_by": False,
2298        "tablespace": False,
2299        "where": False,
2300        "on": False,
2301    }
arg_types = {'using': False, 'include': False, 'columns': False, 'with_storage': False, 'partition_by': False, 'tablespace': False, 'where': False, 'on': False}
key = 'indexparameters'
class Insert(DDL, DML):
2304class Insert(DDL, DML):
2305    arg_types = {
2306        "hint": False,
2307        "with": False,
2308        "is_function": False,
2309        "this": False,
2310        "expression": False,
2311        "conflict": False,
2312        "returning": False,
2313        "overwrite": False,
2314        "exists": False,
2315        "alternative": False,
2316        "where": False,
2317        "ignore": False,
2318        "by_name": False,
2319        "stored": False,
2320        "partition": False,
2321        "settings": False,
2322        "source": False,
2323    }
2324
2325    def with_(
2326        self,
2327        alias: ExpOrStr,
2328        as_: ExpOrStr,
2329        recursive: t.Optional[bool] = None,
2330        materialized: t.Optional[bool] = None,
2331        append: bool = True,
2332        dialect: DialectType = None,
2333        copy: bool = True,
2334        **opts,
2335    ) -> Insert:
2336        """
2337        Append to or set the common table expressions.
2338
2339        Example:
2340            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
2341            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
2342
2343        Args:
2344            alias: the SQL code string to parse as the table name.
2345                If an `Expression` instance is passed, this is used as-is.
2346            as_: the SQL code string to parse as the table expression.
2347                If an `Expression` instance is passed, it will be used as-is.
2348            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2349            materialized: set the MATERIALIZED part of the expression.
2350            append: if `True`, add to any existing expressions.
2351                Otherwise, this resets the expressions.
2352            dialect: the dialect used to parse the input expression.
2353            copy: if `False`, modify this expression instance in-place.
2354            opts: other options to use to parse the input expressions.
2355
2356        Returns:
2357            The modified expression.
2358        """
2359        return _apply_cte_builder(
2360            self,
2361            alias,
2362            as_,
2363            recursive=recursive,
2364            materialized=materialized,
2365            append=append,
2366            dialect=dialect,
2367            copy=copy,
2368            **opts,
2369        )
arg_types = {'hint': False, 'with': False, 'is_function': False, 'this': False, 'expression': False, 'conflict': False, 'returning': False, 'overwrite': False, 'exists': False, 'alternative': False, 'where': False, 'ignore': False, 'by_name': False, 'stored': False, 'partition': False, 'settings': False, 'source': False}
def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, materialized: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
2325    def with_(
2326        self,
2327        alias: ExpOrStr,
2328        as_: ExpOrStr,
2329        recursive: t.Optional[bool] = None,
2330        materialized: t.Optional[bool] = None,
2331        append: bool = True,
2332        dialect: DialectType = None,
2333        copy: bool = True,
2334        **opts,
2335    ) -> Insert:
2336        """
2337        Append to or set the common table expressions.
2338
2339        Example:
2340            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
2341            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
2342
2343        Args:
2344            alias: the SQL code string to parse as the table name.
2345                If an `Expression` instance is passed, this is used as-is.
2346            as_: the SQL code string to parse as the table expression.
2347                If an `Expression` instance is passed, it will be used as-is.
2348            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2349            materialized: set the MATERIALIZED part of the expression.
2350            append: if `True`, add to any existing expressions.
2351                Otherwise, this resets the expressions.
2352            dialect: the dialect used to parse the input expression.
2353            copy: if `False`, modify this expression instance in-place.
2354            opts: other options to use to parse the input expressions.
2355
2356        Returns:
2357            The modified expression.
2358        """
2359        return _apply_cte_builder(
2360            self,
2361            alias,
2362            as_,
2363            recursive=recursive,
2364            materialized=materialized,
2365            append=append,
2366            dialect=dialect,
2367            copy=copy,
2368            **opts,
2369        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • materialized: set the MATERIALIZED part of the expression.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'insert'
class ConditionalInsert(Expression):
2372class ConditionalInsert(Expression):
2373    arg_types = {"this": True, "expression": False, "else_": False}
arg_types = {'this': True, 'expression': False, 'else_': False}
key = 'conditionalinsert'
class MultitableInserts(Expression):
2376class MultitableInserts(Expression):
2377    arg_types = {"expressions": True, "kind": True, "source": True}
arg_types = {'expressions': True, 'kind': True, 'source': True}
key = 'multitableinserts'
class OnConflict(Expression):
2380class OnConflict(Expression):
2381    arg_types = {
2382        "duplicate": False,
2383        "expressions": False,
2384        "action": False,
2385        "conflict_keys": False,
2386        "constraint": False,
2387        "where": False,
2388    }
arg_types = {'duplicate': False, 'expressions': False, 'action': False, 'conflict_keys': False, 'constraint': False, 'where': False}
key = 'onconflict'
class OnCondition(Expression):
2391class OnCondition(Expression):
2392    arg_types = {"error": False, "empty": False, "null": False}
arg_types = {'error': False, 'empty': False, 'null': False}
key = 'oncondition'
class Returning(Expression):
2395class Returning(Expression):
2396    arg_types = {"expressions": True, "into": False}
arg_types = {'expressions': True, 'into': False}
key = 'returning'
class Introducer(Expression):
2400class Introducer(Expression):
2401    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'introducer'
class National(Expression):
2405class National(Expression):
2406    pass
key = 'national'
class LoadData(Expression):
2409class LoadData(Expression):
2410    arg_types = {
2411        "this": True,
2412        "local": False,
2413        "overwrite": False,
2414        "inpath": True,
2415        "partition": False,
2416        "input_format": False,
2417        "serde": False,
2418    }
arg_types = {'this': True, 'local': False, 'overwrite': False, 'inpath': True, 'partition': False, 'input_format': False, 'serde': False}
key = 'loaddata'
class Partition(Expression):
2421class Partition(Expression):
2422    arg_types = {"expressions": True, "subpartition": False}
arg_types = {'expressions': True, 'subpartition': False}
key = 'partition'
class PartitionRange(Expression):
2425class PartitionRange(Expression):
2426    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'partitionrange'
class PartitionId(Expression):
2430class PartitionId(Expression):
2431    pass
key = 'partitionid'
class Fetch(Expression):
2434class Fetch(Expression):
2435    arg_types = {
2436        "direction": False,
2437        "count": False,
2438        "limit_options": False,
2439    }
arg_types = {'direction': False, 'count': False, 'limit_options': False}
key = 'fetch'
class Grant(Expression):
2442class Grant(Expression):
2443    arg_types = {
2444        "privileges": True,
2445        "kind": False,
2446        "securable": True,
2447        "principals": True,
2448        "grant_option": False,
2449    }
arg_types = {'privileges': True, 'kind': False, 'securable': True, 'principals': True, 'grant_option': False}
key = 'grant'
class Group(Expression):
2452class Group(Expression):
2453    arg_types = {
2454        "expressions": False,
2455        "grouping_sets": False,
2456        "cube": False,
2457        "rollup": False,
2458        "totals": False,
2459        "all": False,
2460    }
arg_types = {'expressions': False, 'grouping_sets': False, 'cube': False, 'rollup': False, 'totals': False, 'all': False}
key = 'group'
class Cube(Expression):
2463class Cube(Expression):
2464    arg_types = {"expressions": False}
arg_types = {'expressions': False}
key = 'cube'
class Rollup(Expression):
2467class Rollup(Expression):
2468    arg_types = {"expressions": False}
arg_types = {'expressions': False}
key = 'rollup'
class GroupingSets(Expression):
2471class GroupingSets(Expression):
2472    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'groupingsets'
class Lambda(Expression):
2475class Lambda(Expression):
2476    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'lambda'
class Limit(Expression):
2479class Limit(Expression):
2480    arg_types = {
2481        "this": False,
2482        "expression": True,
2483        "offset": False,
2484        "limit_options": False,
2485        "expressions": False,
2486    }
arg_types = {'this': False, 'expression': True, 'offset': False, 'limit_options': False, 'expressions': False}
key = 'limit'
class LimitOptions(Expression):
2489class LimitOptions(Expression):
2490    arg_types = {
2491        "percent": False,
2492        "rows": False,
2493        "with_ties": False,
2494    }
arg_types = {'percent': False, 'rows': False, 'with_ties': False}
key = 'limitoptions'
class Literal(Condition):
2497class Literal(Condition):
2498    arg_types = {"this": True, "is_string": True}
2499
2500    @property
2501    def hashable_args(self) -> t.Any:
2502        return (self.this, self.args.get("is_string"))
2503
2504    @classmethod
2505    def number(cls, number) -> Literal:
2506        return cls(this=str(number), is_string=False)
2507
2508    @classmethod
2509    def string(cls, string) -> Literal:
2510        return cls(this=str(string), is_string=True)
2511
2512    @property
2513    def output_name(self) -> str:
2514        return self.name
2515
2516    def to_py(self) -> int | str | Decimal:
2517        if self.is_number:
2518            try:
2519                return int(self.this)
2520            except ValueError:
2521                return Decimal(self.this)
2522        return self.this
arg_types = {'this': True, 'is_string': True}
hashable_args: Any
2500    @property
2501    def hashable_args(self) -> t.Any:
2502        return (self.this, self.args.get("is_string"))
@classmethod
def number(cls, number) -> Literal:
2504    @classmethod
2505    def number(cls, number) -> Literal:
2506        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> Literal:
2508    @classmethod
2509    def string(cls, string) -> Literal:
2510        return cls(this=str(string), is_string=True)
output_name: str
2512    @property
2513    def output_name(self) -> str:
2514        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
def to_py(self) -> int | str | decimal.Decimal:
2516    def to_py(self) -> int | str | Decimal:
2517        if self.is_number:
2518            try:
2519                return int(self.this)
2520            except ValueError:
2521                return Decimal(self.this)
2522        return self.this

Returns a Python object equivalent of the SQL node.

key = 'literal'
class Join(Expression):
2525class Join(Expression):
2526    arg_types = {
2527        "this": True,
2528        "on": False,
2529        "side": False,
2530        "kind": False,
2531        "using": False,
2532        "method": False,
2533        "global": False,
2534        "hint": False,
2535        "match_condition": False,  # Snowflake
2536        "expressions": False,
2537        "pivots": False,
2538    }
2539
2540    @property
2541    def method(self) -> str:
2542        return self.text("method").upper()
2543
2544    @property
2545    def kind(self) -> str:
2546        return self.text("kind").upper()
2547
2548    @property
2549    def side(self) -> str:
2550        return self.text("side").upper()
2551
2552    @property
2553    def hint(self) -> str:
2554        return self.text("hint").upper()
2555
2556    @property
2557    def alias_or_name(self) -> str:
2558        return self.this.alias_or_name
2559
2560    @property
2561    def is_semi_or_anti_join(self) -> bool:
2562        return self.kind in ("SEMI", "ANTI")
2563
2564    def on(
2565        self,
2566        *expressions: t.Optional[ExpOrStr],
2567        append: bool = True,
2568        dialect: DialectType = None,
2569        copy: bool = True,
2570        **opts,
2571    ) -> Join:
2572        """
2573        Append to or set the ON expressions.
2574
2575        Example:
2576            >>> import sqlglot
2577            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
2578            'JOIN x ON y = 1'
2579
2580        Args:
2581            *expressions: the SQL code strings to parse.
2582                If an `Expression` instance is passed, it will be used as-is.
2583                Multiple expressions are combined with an AND operator.
2584            append: if `True`, AND the new expressions to any existing expression.
2585                Otherwise, this resets the expression.
2586            dialect: the dialect used to parse the input expressions.
2587            copy: if `False`, modify this expression instance in-place.
2588            opts: other options to use to parse the input expressions.
2589
2590        Returns:
2591            The modified Join expression.
2592        """
2593        join = _apply_conjunction_builder(
2594            *expressions,
2595            instance=self,
2596            arg="on",
2597            append=append,
2598            dialect=dialect,
2599            copy=copy,
2600            **opts,
2601        )
2602
2603        if join.kind == "CROSS":
2604            join.set("kind", None)
2605
2606        return join
2607
2608    def using(
2609        self,
2610        *expressions: t.Optional[ExpOrStr],
2611        append: bool = True,
2612        dialect: DialectType = None,
2613        copy: bool = True,
2614        **opts,
2615    ) -> Join:
2616        """
2617        Append to or set the USING expressions.
2618
2619        Example:
2620            >>> import sqlglot
2621            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
2622            'JOIN x USING (foo, bla)'
2623
2624        Args:
2625            *expressions: the SQL code strings to parse.
2626                If an `Expression` instance is passed, it will be used as-is.
2627            append: if `True`, concatenate the new expressions to the existing "using" list.
2628                Otherwise, this resets the expression.
2629            dialect: the dialect used to parse the input expressions.
2630            copy: if `False`, modify this expression instance in-place.
2631            opts: other options to use to parse the input expressions.
2632
2633        Returns:
2634            The modified Join expression.
2635        """
2636        join = _apply_list_builder(
2637            *expressions,
2638            instance=self,
2639            arg="using",
2640            append=append,
2641            dialect=dialect,
2642            copy=copy,
2643            **opts,
2644        )
2645
2646        if join.kind == "CROSS":
2647            join.set("kind", None)
2648
2649        return join
arg_types = {'this': True, 'on': False, 'side': False, 'kind': False, 'using': False, 'method': False, 'global': False, 'hint': False, 'match_condition': False, 'expressions': False, 'pivots': False}
method: str
2540    @property
2541    def method(self) -> str:
2542        return self.text("method").upper()
kind: str
2544    @property
2545    def kind(self) -> str:
2546        return self.text("kind").upper()
side: str
2548    @property
2549    def side(self) -> str:
2550        return self.text("side").upper()
hint: str
2552    @property
2553    def hint(self) -> str:
2554        return self.text("hint").upper()
alias_or_name: str
2556    @property
2557    def alias_or_name(self) -> str:
2558        return self.this.alias_or_name
is_semi_or_anti_join: bool
2560    @property
2561    def is_semi_or_anti_join(self) -> bool:
2562        return self.kind in ("SEMI", "ANTI")
def on( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
2564    def on(
2565        self,
2566        *expressions: t.Optional[ExpOrStr],
2567        append: bool = True,
2568        dialect: DialectType = None,
2569        copy: bool = True,
2570        **opts,
2571    ) -> Join:
2572        """
2573        Append to or set the ON expressions.
2574
2575        Example:
2576            >>> import sqlglot
2577            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
2578            'JOIN x ON y = 1'
2579
2580        Args:
2581            *expressions: the SQL code strings to parse.
2582                If an `Expression` instance is passed, it will be used as-is.
2583                Multiple expressions are combined with an AND operator.
2584            append: if `True`, AND the new expressions to any existing expression.
2585                Otherwise, this resets the expression.
2586            dialect: the dialect used to parse the input expressions.
2587            copy: if `False`, modify this expression instance in-place.
2588            opts: other options to use to parse the input expressions.
2589
2590        Returns:
2591            The modified Join expression.
2592        """
2593        join = _apply_conjunction_builder(
2594            *expressions,
2595            instance=self,
2596            arg="on",
2597            append=append,
2598            dialect=dialect,
2599            copy=copy,
2600            **opts,
2601        )
2602
2603        if join.kind == "CROSS":
2604            join.set("kind", None)
2605
2606        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
2608    def using(
2609        self,
2610        *expressions: t.Optional[ExpOrStr],
2611        append: bool = True,
2612        dialect: DialectType = None,
2613        copy: bool = True,
2614        **opts,
2615    ) -> Join:
2616        """
2617        Append to or set the USING expressions.
2618
2619        Example:
2620            >>> import sqlglot
2621            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
2622            'JOIN x USING (foo, bla)'
2623
2624        Args:
2625            *expressions: the SQL code strings to parse.
2626                If an `Expression` instance is passed, it will be used as-is.
2627            append: if `True`, concatenate the new expressions to the existing "using" list.
2628                Otherwise, this resets the expression.
2629            dialect: the dialect used to parse the input expressions.
2630            copy: if `False`, modify this expression instance in-place.
2631            opts: other options to use to parse the input expressions.
2632
2633        Returns:
2634            The modified Join expression.
2635        """
2636        join = _apply_list_builder(
2637            *expressions,
2638            instance=self,
2639            arg="using",
2640            append=append,
2641            dialect=dialect,
2642            copy=copy,
2643            **opts,
2644        )
2645
2646        if join.kind == "CROSS":
2647            join.set("kind", None)
2648
2649        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

key = 'join'
class Lateral(UDTF):
2652class Lateral(UDTF):
2653    arg_types = {
2654        "this": True,
2655        "view": False,
2656        "outer": False,
2657        "alias": False,
2658        "cross_apply": False,  # True -> CROSS APPLY, False -> OUTER APPLY
2659        "ordinality": False,
2660    }
arg_types = {'this': True, 'view': False, 'outer': False, 'alias': False, 'cross_apply': False, 'ordinality': False}
key = 'lateral'
class TableFromRows(UDTF):
2665class TableFromRows(UDTF):
2666    arg_types = {
2667        "this": True,
2668        "alias": False,
2669        "joins": False,
2670        "pivots": False,
2671        "sample": False,
2672    }
arg_types = {'this': True, 'alias': False, 'joins': False, 'pivots': False, 'sample': False}
key = 'tablefromrows'
class MatchRecognizeMeasure(Expression):
2675class MatchRecognizeMeasure(Expression):
2676    arg_types = {
2677        "this": True,
2678        "window_frame": False,
2679    }
arg_types = {'this': True, 'window_frame': False}
key = 'matchrecognizemeasure'
class MatchRecognize(Expression):
2682class MatchRecognize(Expression):
2683    arg_types = {
2684        "partition_by": False,
2685        "order": False,
2686        "measures": False,
2687        "rows": False,
2688        "after": False,
2689        "pattern": False,
2690        "define": False,
2691        "alias": False,
2692    }
arg_types = {'partition_by': False, 'order': False, 'measures': False, 'rows': False, 'after': False, 'pattern': False, 'define': False, 'alias': False}
key = 'matchrecognize'
class Final(Expression):
2697class Final(Expression):
2698    pass
key = 'final'
class Offset(Expression):
2701class Offset(Expression):
2702    arg_types = {"this": False, "expression": True, "expressions": False}
arg_types = {'this': False, 'expression': True, 'expressions': False}
key = 'offset'
class Order(Expression):
2705class Order(Expression):
2706    arg_types = {"this": False, "expressions": True, "siblings": False}
arg_types = {'this': False, 'expressions': True, 'siblings': False}
key = 'order'
class WithFill(Expression):
2710class WithFill(Expression):
2711    arg_types = {
2712        "from": False,
2713        "to": False,
2714        "step": False,
2715        "interpolate": False,
2716    }
arg_types = {'from': False, 'to': False, 'step': False, 'interpolate': False}
key = 'withfill'
class Cluster(Order):
2721class Cluster(Order):
2722    pass
key = 'cluster'
class Distribute(Order):
2725class Distribute(Order):
2726    pass
key = 'distribute'
class Sort(Order):
2729class Sort(Order):
2730    pass
key = 'sort'
class Ordered(Expression):
2733class Ordered(Expression):
2734    arg_types = {"this": True, "desc": False, "nulls_first": True, "with_fill": False}
2735
2736    @property
2737    def name(self) -> str:
2738        return self.this.name
arg_types = {'this': True, 'desc': False, 'nulls_first': True, 'with_fill': False}
name: str
2736    @property
2737    def name(self) -> str:
2738        return self.this.name
key = 'ordered'
class Property(Expression):
2741class Property(Expression):
2742    arg_types = {"this": True, "value": True}
arg_types = {'this': True, 'value': True}
key = 'property'
class GrantPrivilege(Expression):
2745class GrantPrivilege(Expression):
2746    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'grantprivilege'
class GrantPrincipal(Expression):
2749class GrantPrincipal(Expression):
2750    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'grantprincipal'
class AllowedValuesProperty(Expression):
2753class AllowedValuesProperty(Expression):
2754    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'allowedvaluesproperty'
class AlgorithmProperty(Property):
2757class AlgorithmProperty(Property):
2758    arg_types = {"this": True}
arg_types = {'this': True}
key = 'algorithmproperty'
class AutoIncrementProperty(Property):
2761class AutoIncrementProperty(Property):
2762    arg_types = {"this": True}
arg_types = {'this': True}
key = 'autoincrementproperty'
class AutoRefreshProperty(Property):
2766class AutoRefreshProperty(Property):
2767    arg_types = {"this": True}
arg_types = {'this': True}
key = 'autorefreshproperty'
class BackupProperty(Property):
2770class BackupProperty(Property):
2771    arg_types = {"this": True}
arg_types = {'this': True}
key = 'backupproperty'
class BlockCompressionProperty(Property):
2774class BlockCompressionProperty(Property):
2775    arg_types = {
2776        "autotemp": False,
2777        "always": False,
2778        "default": False,
2779        "manual": False,
2780        "never": False,
2781    }
arg_types = {'autotemp': False, 'always': False, 'default': False, 'manual': False, 'never': False}
key = 'blockcompressionproperty'
class CharacterSetProperty(Property):
2784class CharacterSetProperty(Property):
2785    arg_types = {"this": True, "default": True}
arg_types = {'this': True, 'default': True}
key = 'charactersetproperty'
class ChecksumProperty(Property):
2788class ChecksumProperty(Property):
2789    arg_types = {"on": False, "default": False}
arg_types = {'on': False, 'default': False}
key = 'checksumproperty'
class CollateProperty(Property):
2792class CollateProperty(Property):
2793    arg_types = {"this": True, "default": False}
arg_types = {'this': True, 'default': False}
key = 'collateproperty'
class CopyGrantsProperty(Property):
2796class CopyGrantsProperty(Property):
2797    arg_types = {}
arg_types = {}
key = 'copygrantsproperty'
class DataBlocksizeProperty(Property):
2800class DataBlocksizeProperty(Property):
2801    arg_types = {
2802        "size": False,
2803        "units": False,
2804        "minimum": False,
2805        "maximum": False,
2806        "default": False,
2807    }
arg_types = {'size': False, 'units': False, 'minimum': False, 'maximum': False, 'default': False}
key = 'datablocksizeproperty'
class DataDeletionProperty(Property):
2810class DataDeletionProperty(Property):
2811    arg_types = {"on": True, "filter_col": False, "retention_period": False}
arg_types = {'on': True, 'filter_col': False, 'retention_period': False}
key = 'datadeletionproperty'
class DefinerProperty(Property):
2814class DefinerProperty(Property):
2815    arg_types = {"this": True}
arg_types = {'this': True}
key = 'definerproperty'
class DistKeyProperty(Property):
2818class DistKeyProperty(Property):
2819    arg_types = {"this": True}
arg_types = {'this': True}
key = 'distkeyproperty'
class DistributedByProperty(Property):
2824class DistributedByProperty(Property):
2825    arg_types = {"expressions": False, "kind": True, "buckets": False, "order": False}
arg_types = {'expressions': False, 'kind': True, 'buckets': False, 'order': False}
key = 'distributedbyproperty'
class DistStyleProperty(Property):
2828class DistStyleProperty(Property):
2829    arg_types = {"this": True}
arg_types = {'this': True}
key = 'diststyleproperty'
class DuplicateKeyProperty(Property):
2832class DuplicateKeyProperty(Property):
2833    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'duplicatekeyproperty'
class EngineProperty(Property):
2836class EngineProperty(Property):
2837    arg_types = {"this": True}
arg_types = {'this': True}
key = 'engineproperty'
class HeapProperty(Property):
2840class HeapProperty(Property):
2841    arg_types = {}
arg_types = {}
key = 'heapproperty'
class ToTableProperty(Property):
2844class ToTableProperty(Property):
2845    arg_types = {"this": True}
arg_types = {'this': True}
key = 'totableproperty'
class ExecuteAsProperty(Property):
2848class ExecuteAsProperty(Property):
2849    arg_types = {"this": True}
arg_types = {'this': True}
key = 'executeasproperty'
class ExternalProperty(Property):
2852class ExternalProperty(Property):
2853    arg_types = {"this": False}
arg_types = {'this': False}
key = 'externalproperty'
class FallbackProperty(Property):
2856class FallbackProperty(Property):
2857    arg_types = {"no": True, "protection": False}
arg_types = {'no': True, 'protection': False}
key = 'fallbackproperty'
class FileFormatProperty(Property):
2860class FileFormatProperty(Property):
2861    arg_types = {"this": False, "expressions": False}
arg_types = {'this': False, 'expressions': False}
key = 'fileformatproperty'
class CredentialsProperty(Property):
2864class CredentialsProperty(Property):
2865    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'credentialsproperty'
class FreespaceProperty(Property):
2868class FreespaceProperty(Property):
2869    arg_types = {"this": True, "percent": False}
arg_types = {'this': True, 'percent': False}
key = 'freespaceproperty'
class GlobalProperty(Property):
2872class GlobalProperty(Property):
2873    arg_types = {}
arg_types = {}
key = 'globalproperty'
class IcebergProperty(Property):
2876class IcebergProperty(Property):
2877    arg_types = {}
arg_types = {}
key = 'icebergproperty'
class InheritsProperty(Property):
2880class InheritsProperty(Property):
2881    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'inheritsproperty'
class InputModelProperty(Property):
2884class InputModelProperty(Property):
2885    arg_types = {"this": True}
arg_types = {'this': True}
key = 'inputmodelproperty'
class OutputModelProperty(Property):
2888class OutputModelProperty(Property):
2889    arg_types = {"this": True}
arg_types = {'this': True}
key = 'outputmodelproperty'
class IsolatedLoadingProperty(Property):
2892class IsolatedLoadingProperty(Property):
2893    arg_types = {"no": False, "concurrent": False, "target": False}
arg_types = {'no': False, 'concurrent': False, 'target': False}
key = 'isolatedloadingproperty'
class JournalProperty(Property):
2896class JournalProperty(Property):
2897    arg_types = {
2898        "no": False,
2899        "dual": False,
2900        "before": False,
2901        "local": False,
2902        "after": False,
2903    }
arg_types = {'no': False, 'dual': False, 'before': False, 'local': False, 'after': False}
key = 'journalproperty'
class LanguageProperty(Property):
2906class LanguageProperty(Property):
2907    arg_types = {"this": True}
arg_types = {'this': True}
key = 'languageproperty'
class EnviromentProperty(Property):
2910class EnviromentProperty(Property):
2911    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'enviromentproperty'
class ClusteredByProperty(Property):
2915class ClusteredByProperty(Property):
2916    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
arg_types = {'expressions': True, 'sorted_by': False, 'buckets': True}
key = 'clusteredbyproperty'
class DictProperty(Property):
2919class DictProperty(Property):
2920    arg_types = {"this": True, "kind": True, "settings": False}
arg_types = {'this': True, 'kind': True, 'settings': False}
key = 'dictproperty'
class DictSubProperty(Property):
2923class DictSubProperty(Property):
2924    pass
key = 'dictsubproperty'
class DictRange(Property):
2927class DictRange(Property):
2928    arg_types = {"this": True, "min": True, "max": True}
arg_types = {'this': True, 'min': True, 'max': True}
key = 'dictrange'
class DynamicProperty(Property):
2931class DynamicProperty(Property):
2932    arg_types = {}
arg_types = {}
key = 'dynamicproperty'
class OnCluster(Property):
2937class OnCluster(Property):
2938    arg_types = {"this": True}
arg_types = {'this': True}
key = 'oncluster'
class EmptyProperty(Property):
2942class EmptyProperty(Property):
2943    arg_types = {}
arg_types = {}
key = 'emptyproperty'
class LikeProperty(Property):
2946class LikeProperty(Property):
2947    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'likeproperty'
class LocationProperty(Property):
2950class LocationProperty(Property):
2951    arg_types = {"this": True}
arg_types = {'this': True}
key = 'locationproperty'
class LockProperty(Property):
2954class LockProperty(Property):
2955    arg_types = {"this": True}
arg_types = {'this': True}
key = 'lockproperty'
class LockingProperty(Property):
2958class LockingProperty(Property):
2959    arg_types = {
2960        "this": False,
2961        "kind": True,
2962        "for_or_in": False,
2963        "lock_type": True,
2964        "override": False,
2965    }
arg_types = {'this': False, 'kind': True, 'for_or_in': False, 'lock_type': True, 'override': False}
key = 'lockingproperty'
class LogProperty(Property):
2968class LogProperty(Property):
2969    arg_types = {"no": True}
arg_types = {'no': True}
key = 'logproperty'
class MaterializedProperty(Property):
2972class MaterializedProperty(Property):
2973    arg_types = {"this": False}
arg_types = {'this': False}
key = 'materializedproperty'
class MergeBlockRatioProperty(Property):
2976class MergeBlockRatioProperty(Property):
2977    arg_types = {"this": False, "no": False, "default": False, "percent": False}
arg_types = {'this': False, 'no': False, 'default': False, 'percent': False}
key = 'mergeblockratioproperty'
class NoPrimaryIndexProperty(Property):
2980class NoPrimaryIndexProperty(Property):
2981    arg_types = {}
arg_types = {}
key = 'noprimaryindexproperty'
class OnProperty(Property):
2984class OnProperty(Property):
2985    arg_types = {"this": True}
arg_types = {'this': True}
key = 'onproperty'
class OnCommitProperty(Property):
2988class OnCommitProperty(Property):
2989    arg_types = {"delete": False}
arg_types = {'delete': False}
key = 'oncommitproperty'
class PartitionedByProperty(Property):
2992class PartitionedByProperty(Property):
2993    arg_types = {"this": True}
arg_types = {'this': True}
key = 'partitionedbyproperty'
class PartitionedByBucket(Property):
2996class PartitionedByBucket(Property):
2997    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'partitionedbybucket'
class PartitionByTruncate(Property):
3000class PartitionByTruncate(Property):
3001    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'partitionbytruncate'
class PartitionByRangeProperty(Property):
3005class PartitionByRangeProperty(Property):
3006    arg_types = {"partition_expressions": True, "create_expressions": True}
arg_types = {'partition_expressions': True, 'create_expressions': True}
key = 'partitionbyrangeproperty'
class PartitionByRangePropertyDynamic(Expression):
3010class PartitionByRangePropertyDynamic(Expression):
3011    arg_types = {"this": False, "start": True, "end": True, "every": True}
arg_types = {'this': False, 'start': True, 'end': True, 'every': True}
key = 'partitionbyrangepropertydynamic'
class UniqueKeyProperty(Property):
3015class UniqueKeyProperty(Property):
3016    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'uniquekeyproperty'
class PartitionBoundSpec(Expression):
3020class PartitionBoundSpec(Expression):
3021    # this -> IN / MODULUS, expression -> REMAINDER, from_expressions -> FROM (...), to_expressions -> TO (...)
3022    arg_types = {
3023        "this": False,
3024        "expression": False,
3025        "from_expressions": False,
3026        "to_expressions": False,
3027    }
arg_types = {'this': False, 'expression': False, 'from_expressions': False, 'to_expressions': False}
key = 'partitionboundspec'
class PartitionedOfProperty(Property):
3030class PartitionedOfProperty(Property):
3031    # this -> parent_table (schema), expression -> FOR VALUES ... / DEFAULT
3032    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'partitionedofproperty'
class StreamingTableProperty(Property):
3035class StreamingTableProperty(Property):
3036    arg_types = {}
arg_types = {}
key = 'streamingtableproperty'
class RemoteWithConnectionModelProperty(Property):
3039class RemoteWithConnectionModelProperty(Property):
3040    arg_types = {"this": True}
arg_types = {'this': True}
key = 'remotewithconnectionmodelproperty'
class ReturnsProperty(Property):
3043class ReturnsProperty(Property):
3044    arg_types = {"this": False, "is_table": False, "table": False, "null": False}
arg_types = {'this': False, 'is_table': False, 'table': False, 'null': False}
key = 'returnsproperty'
class StrictProperty(Property):
3047class StrictProperty(Property):
3048    arg_types = {}
arg_types = {}
key = 'strictproperty'
class RowFormatProperty(Property):
3051class RowFormatProperty(Property):
3052    arg_types = {"this": True}
arg_types = {'this': True}
key = 'rowformatproperty'
class RowFormatDelimitedProperty(Property):
3055class RowFormatDelimitedProperty(Property):
3056    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
3057    arg_types = {
3058        "fields": False,
3059        "escaped": False,
3060        "collection_items": False,
3061        "map_keys": False,
3062        "lines": False,
3063        "null": False,
3064        "serde": False,
3065    }
arg_types = {'fields': False, 'escaped': False, 'collection_items': False, 'map_keys': False, 'lines': False, 'null': False, 'serde': False}
key = 'rowformatdelimitedproperty'
class RowFormatSerdeProperty(Property):
3068class RowFormatSerdeProperty(Property):
3069    arg_types = {"this": True, "serde_properties": False}
arg_types = {'this': True, 'serde_properties': False}
key = 'rowformatserdeproperty'
class QueryTransform(Expression):
3073class QueryTransform(Expression):
3074    arg_types = {
3075        "expressions": True,
3076        "command_script": True,
3077        "schema": False,
3078        "row_format_before": False,
3079        "record_writer": False,
3080        "row_format_after": False,
3081        "record_reader": False,
3082    }
arg_types = {'expressions': True, 'command_script': True, 'schema': False, 'row_format_before': False, 'record_writer': False, 'row_format_after': False, 'record_reader': False}
key = 'querytransform'
class SampleProperty(Property):
3085class SampleProperty(Property):
3086    arg_types = {"this": True}
arg_types = {'this': True}
key = 'sampleproperty'
class SecurityProperty(Property):
3090class SecurityProperty(Property):
3091    arg_types = {"this": True}
arg_types = {'this': True}
key = 'securityproperty'
class SchemaCommentProperty(Property):
3094class SchemaCommentProperty(Property):
3095    arg_types = {"this": True}
arg_types = {'this': True}
key = 'schemacommentproperty'
class SerdeProperties(Property):
3098class SerdeProperties(Property):
3099    arg_types = {"expressions": True, "with": False}
arg_types = {'expressions': True, 'with': False}
key = 'serdeproperties'
class SetProperty(Property):
3102class SetProperty(Property):
3103    arg_types = {"multi": True}
arg_types = {'multi': True}
key = 'setproperty'
class SharingProperty(Property):
3106class SharingProperty(Property):
3107    arg_types = {"this": False}
arg_types = {'this': False}
key = 'sharingproperty'
class SetConfigProperty(Property):
3110class SetConfigProperty(Property):
3111    arg_types = {"this": True}
arg_types = {'this': True}
key = 'setconfigproperty'
class SettingsProperty(Property):
3114class SettingsProperty(Property):
3115    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'settingsproperty'
class SortKeyProperty(Property):
3118class SortKeyProperty(Property):
3119    arg_types = {"this": True, "compound": False}
arg_types = {'this': True, 'compound': False}
key = 'sortkeyproperty'
class SqlReadWriteProperty(Property):
3122class SqlReadWriteProperty(Property):
3123    arg_types = {"this": True}
arg_types = {'this': True}
key = 'sqlreadwriteproperty'
class SqlSecurityProperty(Property):
3126class SqlSecurityProperty(Property):
3127    arg_types = {"definer": True}
arg_types = {'definer': True}
key = 'sqlsecurityproperty'
class StabilityProperty(Property):
3130class StabilityProperty(Property):
3131    arg_types = {"this": True}
arg_types = {'this': True}
key = 'stabilityproperty'
class StorageHandlerProperty(Property):
3134class StorageHandlerProperty(Property):
3135    arg_types = {"this": True}
arg_types = {'this': True}
key = 'storagehandlerproperty'
class TemporaryProperty(Property):
3138class TemporaryProperty(Property):
3139    arg_types = {"this": False}
arg_types = {'this': False}
key = 'temporaryproperty'
class SecureProperty(Property):
3142class SecureProperty(Property):
3143    arg_types = {}
arg_types = {}
key = 'secureproperty'
class Tags(ColumnConstraintKind, Property):
3147class Tags(ColumnConstraintKind, Property):
3148    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'tags'
class TransformModelProperty(Property):
3151class TransformModelProperty(Property):
3152    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'transformmodelproperty'
class TransientProperty(Property):
3155class TransientProperty(Property):
3156    arg_types = {"this": False}
arg_types = {'this': False}
key = 'transientproperty'
class UnloggedProperty(Property):
3159class UnloggedProperty(Property):
3160    arg_types = {}
arg_types = {}
key = 'unloggedproperty'
class UsingTemplateProperty(Property):
3164class UsingTemplateProperty(Property):
3165    arg_types = {"this": True}
arg_types = {'this': True}
key = 'usingtemplateproperty'
class ViewAttributeProperty(Property):
3169class ViewAttributeProperty(Property):
3170    arg_types = {"this": True}
arg_types = {'this': True}
key = 'viewattributeproperty'
class VolatileProperty(Property):
3173class VolatileProperty(Property):
3174    arg_types = {"this": False}
arg_types = {'this': False}
key = 'volatileproperty'
class WithDataProperty(Property):
3177class WithDataProperty(Property):
3178    arg_types = {"no": True, "statistics": False}
arg_types = {'no': True, 'statistics': False}
key = 'withdataproperty'
class WithJournalTableProperty(Property):
3181class WithJournalTableProperty(Property):
3182    arg_types = {"this": True}
arg_types = {'this': True}
key = 'withjournaltableproperty'
class WithSchemaBindingProperty(Property):
3185class WithSchemaBindingProperty(Property):
3186    arg_types = {"this": True}
arg_types = {'this': True}
key = 'withschemabindingproperty'
class WithSystemVersioningProperty(Property):
3189class WithSystemVersioningProperty(Property):
3190    arg_types = {
3191        "on": False,
3192        "this": False,
3193        "data_consistency": False,
3194        "retention_period": False,
3195        "with": True,
3196    }
arg_types = {'on': False, 'this': False, 'data_consistency': False, 'retention_period': False, 'with': True}
key = 'withsystemversioningproperty'
class WithProcedureOptions(Property):
3199class WithProcedureOptions(Property):
3200    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'withprocedureoptions'
class EncodeProperty(Property):
3203class EncodeProperty(Property):
3204    arg_types = {"this": True, "properties": False, "key": False}
arg_types = {'this': True, 'properties': False, 'key': False}
key = 'encodeproperty'
class IncludeProperty(Property):
3207class IncludeProperty(Property):
3208    arg_types = {"this": True, "alias": False, "column_def": False}
arg_types = {'this': True, 'alias': False, 'column_def': False}
key = 'includeproperty'
class ForceProperty(Property):
3211class ForceProperty(Property):
3212    arg_types = {}
arg_types = {}
key = 'forceproperty'
class Properties(Expression):
3215class Properties(Expression):
3216    arg_types = {"expressions": True}
3217
3218    NAME_TO_PROPERTY = {
3219        "ALGORITHM": AlgorithmProperty,
3220        "AUTO_INCREMENT": AutoIncrementProperty,
3221        "CHARACTER SET": CharacterSetProperty,
3222        "CLUSTERED_BY": ClusteredByProperty,
3223        "COLLATE": CollateProperty,
3224        "COMMENT": SchemaCommentProperty,
3225        "CREDENTIALS": CredentialsProperty,
3226        "DEFINER": DefinerProperty,
3227        "DISTKEY": DistKeyProperty,
3228        "DISTRIBUTED_BY": DistributedByProperty,
3229        "DISTSTYLE": DistStyleProperty,
3230        "ENGINE": EngineProperty,
3231        "EXECUTE AS": ExecuteAsProperty,
3232        "FORMAT": FileFormatProperty,
3233        "LANGUAGE": LanguageProperty,
3234        "LOCATION": LocationProperty,
3235        "LOCK": LockProperty,
3236        "PARTITIONED_BY": PartitionedByProperty,
3237        "RETURNS": ReturnsProperty,
3238        "ROW_FORMAT": RowFormatProperty,
3239        "SORTKEY": SortKeyProperty,
3240        "ENCODE": EncodeProperty,
3241        "INCLUDE": IncludeProperty,
3242    }
3243
3244    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
3245
3246    # CREATE property locations
3247    # Form: schema specified
3248    #   create [POST_CREATE]
3249    #     table a [POST_NAME]
3250    #     (b int) [POST_SCHEMA]
3251    #     with ([POST_WITH])
3252    #     index (b) [POST_INDEX]
3253    #
3254    # Form: alias selection
3255    #   create [POST_CREATE]
3256    #     table a [POST_NAME]
3257    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
3258    #     index (c) [POST_INDEX]
3259    class Location(AutoName):
3260        POST_CREATE = auto()
3261        POST_NAME = auto()
3262        POST_SCHEMA = auto()
3263        POST_WITH = auto()
3264        POST_ALIAS = auto()
3265        POST_EXPRESSION = auto()
3266        POST_INDEX = auto()
3267        UNSUPPORTED = auto()
3268
3269    @classmethod
3270    def from_dict(cls, properties_dict: t.Dict) -> Properties:
3271        expressions = []
3272        for key, value in properties_dict.items():
3273            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
3274            if property_cls:
3275                expressions.append(property_cls(this=convert(value)))
3276            else:
3277                expressions.append(Property(this=Literal.string(key), value=convert(value)))
3278
3279        return cls(expressions=expressions)
arg_types = {'expressions': True}
NAME_TO_PROPERTY = {'ALGORITHM': <class 'AlgorithmProperty'>, 'AUTO_INCREMENT': <class 'AutoIncrementProperty'>, 'CHARACTER SET': <class 'CharacterSetProperty'>, 'CLUSTERED_BY': <class 'ClusteredByProperty'>, 'COLLATE': <class 'CollateProperty'>, 'COMMENT': <class 'SchemaCommentProperty'>, 'CREDENTIALS': <class 'CredentialsProperty'>, 'DEFINER': <class 'DefinerProperty'>, 'DISTKEY': <class 'DistKeyProperty'>, 'DISTRIBUTED_BY': <class 'DistributedByProperty'>, 'DISTSTYLE': <class 'DistStyleProperty'>, 'ENGINE': <class 'EngineProperty'>, 'EXECUTE AS': <class 'ExecuteAsProperty'>, 'FORMAT': <class 'FileFormatProperty'>, 'LANGUAGE': <class 'LanguageProperty'>, 'LOCATION': <class 'LocationProperty'>, 'LOCK': <class 'LockProperty'>, 'PARTITIONED_BY': <class 'PartitionedByProperty'>, 'RETURNS': <class 'ReturnsProperty'>, 'ROW_FORMAT': <class 'RowFormatProperty'>, 'SORTKEY': <class 'SortKeyProperty'>, 'ENCODE': <class 'EncodeProperty'>, 'INCLUDE': <class 'IncludeProperty'>}
PROPERTY_TO_NAME = {<class 'AlgorithmProperty'>: 'ALGORITHM', <class 'AutoIncrementProperty'>: 'AUTO_INCREMENT', <class 'CharacterSetProperty'>: 'CHARACTER SET', <class 'ClusteredByProperty'>: 'CLUSTERED_BY', <class 'CollateProperty'>: 'COLLATE', <class 'SchemaCommentProperty'>: 'COMMENT', <class 'CredentialsProperty'>: 'CREDENTIALS', <class 'DefinerProperty'>: 'DEFINER', <class 'DistKeyProperty'>: 'DISTKEY', <class 'DistributedByProperty'>: 'DISTRIBUTED_BY', <class 'DistStyleProperty'>: 'DISTSTYLE', <class 'EngineProperty'>: 'ENGINE', <class 'ExecuteAsProperty'>: 'EXECUTE AS', <class 'FileFormatProperty'>: 'FORMAT', <class 'LanguageProperty'>: 'LANGUAGE', <class 'LocationProperty'>: 'LOCATION', <class 'LockProperty'>: 'LOCK', <class 'PartitionedByProperty'>: 'PARTITIONED_BY', <class 'ReturnsProperty'>: 'RETURNS', <class 'RowFormatProperty'>: 'ROW_FORMAT', <class 'SortKeyProperty'>: 'SORTKEY', <class 'EncodeProperty'>: 'ENCODE', <class 'IncludeProperty'>: 'INCLUDE'}
@classmethod
def from_dict(cls, properties_dict: Dict) -> Properties:
3269    @classmethod
3270    def from_dict(cls, properties_dict: t.Dict) -> Properties:
3271        expressions = []
3272        for key, value in properties_dict.items():
3273            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
3274            if property_cls:
3275                expressions.append(property_cls(this=convert(value)))
3276            else:
3277                expressions.append(Property(this=Literal.string(key), value=convert(value)))
3278
3279        return cls(expressions=expressions)
key = 'properties'
class Properties.Location(sqlglot.helper.AutoName):
3259    class Location(AutoName):
3260        POST_CREATE = auto()
3261        POST_NAME = auto()
3262        POST_SCHEMA = auto()
3263        POST_WITH = auto()
3264        POST_ALIAS = auto()
3265        POST_EXPRESSION = auto()
3266        POST_INDEX = auto()
3267        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
class Qualify(Expression):
3282class Qualify(Expression):
3283    pass
key = 'qualify'
class InputOutputFormat(Expression):
3286class InputOutputFormat(Expression):
3287    arg_types = {"input_format": False, "output_format": False}
arg_types = {'input_format': False, 'output_format': False}
key = 'inputoutputformat'
class Return(Expression):
3291class Return(Expression):
3292    pass
key = 'return'
class Reference(Expression):
3295class Reference(Expression):
3296    arg_types = {"this": True, "expressions": False, "options": False}
arg_types = {'this': True, 'expressions': False, 'options': False}
key = 'reference'
class Tuple(Expression):
3299class Tuple(Expression):
3300    arg_types = {"expressions": False}
3301
3302    def isin(
3303        self,
3304        *expressions: t.Any,
3305        query: t.Optional[ExpOrStr] = None,
3306        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
3307        copy: bool = True,
3308        **opts,
3309    ) -> In:
3310        return In(
3311            this=maybe_copy(self, copy),
3312            expressions=[convert(e, copy=copy) for e in expressions],
3313            query=maybe_parse(query, copy=copy, **opts) if query else None,
3314            unnest=(
3315                Unnest(
3316                    expressions=[
3317                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
3318                        for e in ensure_list(unnest)
3319                    ]
3320                )
3321                if unnest
3322                else None
3323            ),
3324        )
arg_types = {'expressions': False}
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
3302    def isin(
3303        self,
3304        *expressions: t.Any,
3305        query: t.Optional[ExpOrStr] = None,
3306        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
3307        copy: bool = True,
3308        **opts,
3309    ) -> In:
3310        return In(
3311            this=maybe_copy(self, copy),
3312            expressions=[convert(e, copy=copy) for e in expressions],
3313            query=maybe_parse(query, copy=copy, **opts) if query else None,
3314            unnest=(
3315                Unnest(
3316                    expressions=[
3317                        maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts)
3318                        for e in ensure_list(unnest)
3319                    ]
3320                )
3321                if unnest
3322                else None
3323            ),
3324        )
key = 'tuple'
QUERY_MODIFIERS = {'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
class QueryOption(Expression):
3355class QueryOption(Expression):
3356    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'queryoption'
class WithTableHint(Expression):
3360class WithTableHint(Expression):
3361    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'withtablehint'
class IndexTableHint(Expression):
3365class IndexTableHint(Expression):
3366    arg_types = {"this": True, "expressions": False, "target": False}
arg_types = {'this': True, 'expressions': False, 'target': False}
key = 'indextablehint'
class HistoricalData(Expression):
3370class HistoricalData(Expression):
3371    arg_types = {"this": True, "kind": True, "expression": True}
arg_types = {'this': True, 'kind': True, 'expression': True}
key = 'historicaldata'
class Put(Expression):
3375class Put(Expression):
3376    arg_types = {"this": True, "target": True, "properties": False}
arg_types = {'this': True, 'target': True, 'properties': False}
key = 'put'
class Get(Expression):
3380class Get(Expression):
3381    arg_types = {"this": True, "target": True, "properties": False}
arg_types = {'this': True, 'target': True, 'properties': False}
key = 'get'
class Table(Expression):
3384class Table(Expression):
3385    arg_types = {
3386        "this": False,
3387        "alias": False,
3388        "db": False,
3389        "catalog": False,
3390        "laterals": False,
3391        "joins": False,
3392        "pivots": False,
3393        "hints": False,
3394        "system_time": False,
3395        "version": False,
3396        "format": False,
3397        "pattern": False,
3398        "ordinality": False,
3399        "when": False,
3400        "only": False,
3401        "partition": False,
3402        "changes": False,
3403        "rows_from": False,
3404        "sample": False,
3405    }
3406
3407    @property
3408    def name(self) -> str:
3409        if not self.this or isinstance(self.this, Func):
3410            return ""
3411        return self.this.name
3412
3413    @property
3414    def db(self) -> str:
3415        return self.text("db")
3416
3417    @property
3418    def catalog(self) -> str:
3419        return self.text("catalog")
3420
3421    @property
3422    def selects(self) -> t.List[Expression]:
3423        return []
3424
3425    @property
3426    def named_selects(self) -> t.List[str]:
3427        return []
3428
3429    @property
3430    def parts(self) -> t.List[Expression]:
3431        """Return the parts of a table in order catalog, db, table."""
3432        parts: t.List[Expression] = []
3433
3434        for arg in ("catalog", "db", "this"):
3435            part = self.args.get(arg)
3436
3437            if isinstance(part, Dot):
3438                parts.extend(part.flatten())
3439            elif isinstance(part, Expression):
3440                parts.append(part)
3441
3442        return parts
3443
3444    def to_column(self, copy: bool = True) -> Expression:
3445        parts = self.parts
3446        last_part = parts[-1]
3447
3448        if isinstance(last_part, Identifier):
3449            col: Expression = column(*reversed(parts[0:4]), fields=parts[4:], copy=copy)  # type: ignore
3450        else:
3451            # This branch will be reached if a function or array is wrapped in a `Table`
3452            col = last_part
3453
3454        alias = self.args.get("alias")
3455        if alias:
3456            col = alias_(col, alias.this, copy=copy)
3457
3458        return col
arg_types = {'this': False, 'alias': False, 'db': False, 'catalog': False, 'laterals': False, 'joins': False, 'pivots': False, 'hints': False, 'system_time': False, 'version': False, 'format': False, 'pattern': False, 'ordinality': False, 'when': False, 'only': False, 'partition': False, 'changes': False, 'rows_from': False, 'sample': False}
name: str
3407    @property
3408    def name(self) -> str:
3409        if not self.this or isinstance(self.this, Func):
3410            return ""
3411        return self.this.name
db: str
3413    @property
3414    def db(self) -> str:
3415        return self.text("db")
catalog: str
3417    @property
3418    def catalog(self) -> str:
3419        return self.text("catalog")
selects: List[Expression]
3421    @property
3422    def selects(self) -> t.List[Expression]:
3423        return []
named_selects: List[str]
3425    @property
3426    def named_selects(self) -> t.List[str]:
3427        return []
parts: List[Expression]
3429    @property
3430    def parts(self) -> t.List[Expression]:
3431        """Return the parts of a table in order catalog, db, table."""
3432        parts: t.List[Expression] = []
3433
3434        for arg in ("catalog", "db", "this"):
3435            part = self.args.get(arg)
3436
3437            if isinstance(part, Dot):
3438                parts.extend(part.flatten())
3439            elif isinstance(part, Expression):
3440                parts.append(part)
3441
3442        return parts

Return the parts of a table in order catalog, db, table.

def to_column(self, copy: bool = True) -> Expression:
3444    def to_column(self, copy: bool = True) -> Expression:
3445        parts = self.parts
3446        last_part = parts[-1]
3447
3448        if isinstance(last_part, Identifier):
3449            col: Expression = column(*reversed(parts[0:4]), fields=parts[4:], copy=copy)  # type: ignore
3450        else:
3451            # This branch will be reached if a function or array is wrapped in a `Table`
3452            col = last_part
3453
3454        alias = self.args.get("alias")
3455        if alias:
3456            col = alias_(col, alias.this, copy=copy)
3457
3458        return col
key = 'table'
class SetOperation(Query):
3461class SetOperation(Query):
3462    arg_types = {
3463        "with": False,
3464        "this": True,
3465        "expression": True,
3466        "distinct": False,
3467        "by_name": False,
3468        "side": False,
3469        "kind": False,
3470        "on": False,
3471        **QUERY_MODIFIERS,
3472    }
3473
3474    def select(
3475        self: S,
3476        *expressions: t.Optional[ExpOrStr],
3477        append: bool = True,
3478        dialect: DialectType = None,
3479        copy: bool = True,
3480        **opts,
3481    ) -> S:
3482        this = maybe_copy(self, copy)
3483        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
3484        this.expression.unnest().select(
3485            *expressions, append=append, dialect=dialect, copy=False, **opts
3486        )
3487        return this
3488
3489    @property
3490    def named_selects(self) -> t.List[str]:
3491        return self.this.unnest().named_selects
3492
3493    @property
3494    def is_star(self) -> bool:
3495        return self.this.is_star or self.expression.is_star
3496
3497    @property
3498    def selects(self) -> t.List[Expression]:
3499        return self.this.unnest().selects
3500
3501    @property
3502    def left(self) -> Query:
3503        return self.this
3504
3505    @property
3506    def right(self) -> Query:
3507        return self.expression
3508
3509    @property
3510    def kind(self) -> str:
3511        return self.text("kind").upper()
3512
3513    @property
3514    def side(self) -> str:
3515        return self.text("side").upper()
arg_types = {'with': False, 'this': True, 'expression': True, 'distinct': False, 'by_name': False, 'side': False, 'kind': False, 'on': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
def select( self: ~S, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> ~S:
3474    def select(
3475        self: S,
3476        *expressions: t.Optional[ExpOrStr],
3477        append: bool = True,
3478        dialect: DialectType = None,
3479        copy: bool = True,
3480        **opts,
3481    ) -> S:
3482        this = maybe_copy(self, copy)
3483        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
3484        this.expression.unnest().select(
3485            *expressions, append=append, dialect=dialect, copy=False, **opts
3486        )
3487        return this

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

named_selects: List[str]
3489    @property
3490    def named_selects(self) -> t.List[str]:
3491        return self.this.unnest().named_selects

Returns the output names of the query's projections.

is_star: bool
3493    @property
3494    def is_star(self) -> bool:
3495        return self.this.is_star or self.expression.is_star

Checks whether an expression is a star.

selects: List[Expression]
3497    @property
3498    def selects(self) -> t.List[Expression]:
3499        return self.this.unnest().selects

Returns the query's projections.

left: Query
3501    @property
3502    def left(self) -> Query:
3503        return self.this
right: Query
3505    @property
3506    def right(self) -> Query:
3507        return self.expression
kind: str
3509    @property
3510    def kind(self) -> str:
3511        return self.text("kind").upper()
side: str
3513    @property
3514    def side(self) -> str:
3515        return self.text("side").upper()
key = 'setoperation'
class Union(SetOperation):
3518class Union(SetOperation):
3519    pass
key = 'union'
class Except(SetOperation):
3522class Except(SetOperation):
3523    pass
key = 'except'
class Intersect(SetOperation):
3526class Intersect(SetOperation):
3527    pass
key = 'intersect'
class Update(DML):
3530class Update(DML):
3531    arg_types = {
3532        "with": False,
3533        "this": False,
3534        "expressions": True,
3535        "from": False,
3536        "where": False,
3537        "returning": False,
3538        "order": False,
3539        "limit": False,
3540    }
3541
3542    def table(
3543        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3544    ) -> Update:
3545        """
3546        Set the table to update.
3547
3548        Example:
3549            >>> Update().table("my_table").set_("x = 1").sql()
3550            'UPDATE my_table SET x = 1'
3551
3552        Args:
3553            expression : the SQL code strings to parse.
3554                If a `Table` instance is passed, this is used as-is.
3555                If another `Expression` instance is passed, it will be wrapped in a `Table`.
3556            dialect: the dialect used to parse the input expression.
3557            copy: if `False`, modify this expression instance in-place.
3558            opts: other options to use to parse the input expressions.
3559
3560        Returns:
3561            The modified Update expression.
3562        """
3563        return _apply_builder(
3564            expression=expression,
3565            instance=self,
3566            arg="this",
3567            into=Table,
3568            prefix=None,
3569            dialect=dialect,
3570            copy=copy,
3571            **opts,
3572        )
3573
3574    def set_(
3575        self,
3576        *expressions: ExpOrStr,
3577        append: bool = True,
3578        dialect: DialectType = None,
3579        copy: bool = True,
3580        **opts,
3581    ) -> Update:
3582        """
3583        Append to or set the SET expressions.
3584
3585        Example:
3586            >>> Update().table("my_table").set_("x = 1").sql()
3587            'UPDATE my_table SET x = 1'
3588
3589        Args:
3590            *expressions: the SQL code strings to parse.
3591                If `Expression` instance(s) are passed, they will be used as-is.
3592                Multiple expressions are combined with a comma.
3593            append: if `True`, add the new expressions to any existing SET expressions.
3594                Otherwise, this resets the expressions.
3595            dialect: the dialect used to parse the input expressions.
3596            copy: if `False`, modify this expression instance in-place.
3597            opts: other options to use to parse the input expressions.
3598        """
3599        return _apply_list_builder(
3600            *expressions,
3601            instance=self,
3602            arg="expressions",
3603            append=append,
3604            into=Expression,
3605            prefix=None,
3606            dialect=dialect,
3607            copy=copy,
3608            **opts,
3609        )
3610
3611    def where(
3612        self,
3613        *expressions: t.Optional[ExpOrStr],
3614        append: bool = True,
3615        dialect: DialectType = None,
3616        copy: bool = True,
3617        **opts,
3618    ) -> Select:
3619        """
3620        Append to or set the WHERE expressions.
3621
3622        Example:
3623            >>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
3624            "UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
3625
3626        Args:
3627            *expressions: the SQL code strings to parse.
3628                If an `Expression` instance is passed, it will be used as-is.
3629                Multiple expressions are combined with an AND operator.
3630            append: if `True`, AND the new expressions to any existing expression.
3631                Otherwise, this resets the expression.
3632            dialect: the dialect used to parse the input expressions.
3633            copy: if `False`, modify this expression instance in-place.
3634            opts: other options to use to parse the input expressions.
3635
3636        Returns:
3637            Select: the modified expression.
3638        """
3639        return _apply_conjunction_builder(
3640            *expressions,
3641            instance=self,
3642            arg="where",
3643            append=append,
3644            into=Where,
3645            dialect=dialect,
3646            copy=copy,
3647            **opts,
3648        )
3649
3650    def from_(
3651        self,
3652        expression: t.Optional[ExpOrStr] = None,
3653        dialect: DialectType = None,
3654        copy: bool = True,
3655        **opts,
3656    ) -> Update:
3657        """
3658        Set the FROM expression.
3659
3660        Example:
3661            >>> Update().table("my_table").set_("x = 1").from_("baz").sql()
3662            'UPDATE my_table SET x = 1 FROM baz'
3663
3664        Args:
3665            expression : the SQL code strings to parse.
3666                If a `From` instance is passed, this is used as-is.
3667                If another `Expression` instance is passed, it will be wrapped in a `From`.
3668                If nothing is passed in then a from is not applied to the expression
3669            dialect: the dialect used to parse the input expression.
3670            copy: if `False`, modify this expression instance in-place.
3671            opts: other options to use to parse the input expressions.
3672
3673        Returns:
3674            The modified Update expression.
3675        """
3676        if not expression:
3677            return maybe_copy(self, copy)
3678
3679        return _apply_builder(
3680            expression=expression,
3681            instance=self,
3682            arg="from",
3683            into=From,
3684            prefix="FROM",
3685            dialect=dialect,
3686            copy=copy,
3687            **opts,
3688        )
3689
3690    def with_(
3691        self,
3692        alias: ExpOrStr,
3693        as_: ExpOrStr,
3694        recursive: t.Optional[bool] = None,
3695        materialized: t.Optional[bool] = None,
3696        append: bool = True,
3697        dialect: DialectType = None,
3698        copy: bool = True,
3699        **opts,
3700    ) -> Update:
3701        """
3702        Append to or set the common table expressions.
3703
3704        Example:
3705            >>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
3706            'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
3707
3708        Args:
3709            alias: the SQL code string to parse as the table name.
3710                If an `Expression` instance is passed, this is used as-is.
3711            as_: the SQL code string to parse as the table expression.
3712                If an `Expression` instance is passed, it will be used as-is.
3713            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
3714            materialized: set the MATERIALIZED part of the expression.
3715            append: if `True`, add to any existing expressions.
3716                Otherwise, this resets the expressions.
3717            dialect: the dialect used to parse the input expression.
3718            copy: if `False`, modify this expression instance in-place.
3719            opts: other options to use to parse the input expressions.
3720
3721        Returns:
3722            The modified expression.
3723        """
3724        return _apply_cte_builder(
3725            self,
3726            alias,
3727            as_,
3728            recursive=recursive,
3729            materialized=materialized,
3730            append=append,
3731            dialect=dialect,
3732            copy=copy,
3733            **opts,
3734        )
arg_types = {'with': False, 'this': False, 'expressions': True, 'from': False, 'where': False, 'returning': False, 'order': False, 'limit': False}
def table( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3542    def table(
3543        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3544    ) -> Update:
3545        """
3546        Set the table to update.
3547
3548        Example:
3549            >>> Update().table("my_table").set_("x = 1").sql()
3550            'UPDATE my_table SET x = 1'
3551
3552        Args:
3553            expression : the SQL code strings to parse.
3554                If a `Table` instance is passed, this is used as-is.
3555                If another `Expression` instance is passed, it will be wrapped in a `Table`.
3556            dialect: the dialect used to parse the input expression.
3557            copy: if `False`, modify this expression instance in-place.
3558            opts: other options to use to parse the input expressions.
3559
3560        Returns:
3561            The modified Update expression.
3562        """
3563        return _apply_builder(
3564            expression=expression,
3565            instance=self,
3566            arg="this",
3567            into=Table,
3568            prefix=None,
3569            dialect=dialect,
3570            copy=copy,
3571            **opts,
3572        )

Set the table to update.

Example:
>>> Update().table("my_table").set_("x = 1").sql()
'UPDATE my_table SET x = 1'
Arguments:
  • expression : the SQL code strings to parse. If a Table instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Table.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Update expression.

def set_( self, *expressions: Union[str, Expression], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3574    def set_(
3575        self,
3576        *expressions: ExpOrStr,
3577        append: bool = True,
3578        dialect: DialectType = None,
3579        copy: bool = True,
3580        **opts,
3581    ) -> Update:
3582        """
3583        Append to or set the SET expressions.
3584
3585        Example:
3586            >>> Update().table("my_table").set_("x = 1").sql()
3587            'UPDATE my_table SET x = 1'
3588
3589        Args:
3590            *expressions: the SQL code strings to parse.
3591                If `Expression` instance(s) are passed, they will be used as-is.
3592                Multiple expressions are combined with a comma.
3593            append: if `True`, add the new expressions to any existing SET expressions.
3594                Otherwise, this resets the expressions.
3595            dialect: the dialect used to parse the input expressions.
3596            copy: if `False`, modify this expression instance in-place.
3597            opts: other options to use to parse the input expressions.
3598        """
3599        return _apply_list_builder(
3600            *expressions,
3601            instance=self,
3602            arg="expressions",
3603            append=append,
3604            into=Expression,
3605            prefix=None,
3606            dialect=dialect,
3607            copy=copy,
3608            **opts,
3609        )

Append to or set the SET expressions.

Example:
>>> Update().table("my_table").set_("x = 1").sql()
'UPDATE my_table SET x = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If Expression instance(s) are passed, they will be used as-is. Multiple expressions are combined with a comma.
  • append: if True, add the new expressions to any existing SET expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3611    def where(
3612        self,
3613        *expressions: t.Optional[ExpOrStr],
3614        append: bool = True,
3615        dialect: DialectType = None,
3616        copy: bool = True,
3617        **opts,
3618    ) -> Select:
3619        """
3620        Append to or set the WHERE expressions.
3621
3622        Example:
3623            >>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
3624            "UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
3625
3626        Args:
3627            *expressions: the SQL code strings to parse.
3628                If an `Expression` instance is passed, it will be used as-is.
3629                Multiple expressions are combined with an AND operator.
3630            append: if `True`, AND the new expressions to any existing expression.
3631                Otherwise, this resets the expression.
3632            dialect: the dialect used to parse the input expressions.
3633            copy: if `False`, modify this expression instance in-place.
3634            opts: other options to use to parse the input expressions.
3635
3636        Returns:
3637            Select: the modified expression.
3638        """
3639        return _apply_conjunction_builder(
3640            *expressions,
3641            instance=self,
3642            arg="where",
3643            append=append,
3644            into=Where,
3645            dialect=dialect,
3646            copy=copy,
3647            **opts,
3648        )

Append to or set the WHERE expressions.

Example:
>>> Update().table("tbl").set_("x = 1").where("x = 'a' OR x < 'b'").sql()
"UPDATE tbl SET x = 1 WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def from_( self, expression: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3650    def from_(
3651        self,
3652        expression: t.Optional[ExpOrStr] = None,
3653        dialect: DialectType = None,
3654        copy: bool = True,
3655        **opts,
3656    ) -> Update:
3657        """
3658        Set the FROM expression.
3659
3660        Example:
3661            >>> Update().table("my_table").set_("x = 1").from_("baz").sql()
3662            'UPDATE my_table SET x = 1 FROM baz'
3663
3664        Args:
3665            expression : the SQL code strings to parse.
3666                If a `From` instance is passed, this is used as-is.
3667                If another `Expression` instance is passed, it will be wrapped in a `From`.
3668                If nothing is passed in then a from is not applied to the expression
3669            dialect: the dialect used to parse the input expression.
3670            copy: if `False`, modify this expression instance in-place.
3671            opts: other options to use to parse the input expressions.
3672
3673        Returns:
3674            The modified Update expression.
3675        """
3676        if not expression:
3677            return maybe_copy(self, copy)
3678
3679        return _apply_builder(
3680            expression=expression,
3681            instance=self,
3682            arg="from",
3683            into=From,
3684            prefix="FROM",
3685            dialect=dialect,
3686            copy=copy,
3687            **opts,
3688        )

Set the FROM expression.

Example:
>>> Update().table("my_table").set_("x = 1").from_("baz").sql()
'UPDATE my_table SET x = 1 FROM baz'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From. If nothing is passed in then a from is not applied to the expression
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Update expression.

def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, materialized: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Update:
3690    def with_(
3691        self,
3692        alias: ExpOrStr,
3693        as_: ExpOrStr,
3694        recursive: t.Optional[bool] = None,
3695        materialized: t.Optional[bool] = None,
3696        append: bool = True,
3697        dialect: DialectType = None,
3698        copy: bool = True,
3699        **opts,
3700    ) -> Update:
3701        """
3702        Append to or set the common table expressions.
3703
3704        Example:
3705            >>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
3706            'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
3707
3708        Args:
3709            alias: the SQL code string to parse as the table name.
3710                If an `Expression` instance is passed, this is used as-is.
3711            as_: the SQL code string to parse as the table expression.
3712                If an `Expression` instance is passed, it will be used as-is.
3713            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
3714            materialized: set the MATERIALIZED part of the expression.
3715            append: if `True`, add to any existing expressions.
3716                Otherwise, this resets the expressions.
3717            dialect: the dialect used to parse the input expression.
3718            copy: if `False`, modify this expression instance in-place.
3719            opts: other options to use to parse the input expressions.
3720
3721        Returns:
3722            The modified expression.
3723        """
3724        return _apply_cte_builder(
3725            self,
3726            alias,
3727            as_,
3728            recursive=recursive,
3729            materialized=materialized,
3730            append=append,
3731            dialect=dialect,
3732            copy=copy,
3733            **opts,
3734        )

Append to or set the common table expressions.

Example:
>>> Update().table("my_table").set_("x = 1").from_("baz").with_("baz", "SELECT id FROM foo").sql()
'WITH baz AS (SELECT id FROM foo) UPDATE my_table SET x = 1 FROM baz'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • materialized: set the MATERIALIZED part of the expression.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'update'
class Values(UDTF):
3737class Values(UDTF):
3738    arg_types = {"expressions": True, "alias": False}
arg_types = {'expressions': True, 'alias': False}
key = 'values'
class Var(Expression):
3741class Var(Expression):
3742    pass
key = 'var'
class Version(Expression):
3745class Version(Expression):
3746    """
3747    Time travel, iceberg, bigquery etc
3748    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
3749    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
3750    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
3751    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
3752    this is either TIMESTAMP or VERSION
3753    kind is ("AS OF", "BETWEEN")
3754    """
3755
3756    arg_types = {"this": True, "kind": True, "expression": False}
arg_types = {'this': True, 'kind': True, 'expression': False}
key = 'version'
class Schema(Expression):
3759class Schema(Expression):
3760    arg_types = {"this": False, "expressions": False}
arg_types = {'this': False, 'expressions': False}
key = 'schema'
class Lock(Expression):
3765class Lock(Expression):
3766    arg_types = {"update": True, "expressions": False, "wait": False}
arg_types = {'update': True, 'expressions': False, 'wait': False}
key = 'lock'
class Select(Query):
3769class Select(Query):
3770    arg_types = {
3771        "with": False,
3772        "kind": False,
3773        "expressions": False,
3774        "hint": False,
3775        "distinct": False,
3776        "into": False,
3777        "from": False,
3778        "operation_modifiers": False,
3779        **QUERY_MODIFIERS,
3780    }
3781
3782    def from_(
3783        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3784    ) -> Select:
3785        """
3786        Set the FROM expression.
3787
3788        Example:
3789            >>> Select().from_("tbl").select("x").sql()
3790            'SELECT x FROM tbl'
3791
3792        Args:
3793            expression : the SQL code strings to parse.
3794                If a `From` instance is passed, this is used as-is.
3795                If another `Expression` instance is passed, it will be wrapped in a `From`.
3796            dialect: the dialect used to parse the input expression.
3797            copy: if `False`, modify this expression instance in-place.
3798            opts: other options to use to parse the input expressions.
3799
3800        Returns:
3801            The modified Select expression.
3802        """
3803        return _apply_builder(
3804            expression=expression,
3805            instance=self,
3806            arg="from",
3807            into=From,
3808            prefix="FROM",
3809            dialect=dialect,
3810            copy=copy,
3811            **opts,
3812        )
3813
3814    def group_by(
3815        self,
3816        *expressions: t.Optional[ExpOrStr],
3817        append: bool = True,
3818        dialect: DialectType = None,
3819        copy: bool = True,
3820        **opts,
3821    ) -> Select:
3822        """
3823        Set the GROUP BY expression.
3824
3825        Example:
3826            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
3827            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
3828
3829        Args:
3830            *expressions: the SQL code strings to parse.
3831                If a `Group` instance is passed, this is used as-is.
3832                If another `Expression` instance is passed, it will be wrapped in a `Group`.
3833                If nothing is passed in then a group by is not applied to the expression
3834            append: if `True`, add to any existing expressions.
3835                Otherwise, this flattens all the `Group` expression into a single expression.
3836            dialect: the dialect used to parse the input expression.
3837            copy: if `False`, modify this expression instance in-place.
3838            opts: other options to use to parse the input expressions.
3839
3840        Returns:
3841            The modified Select expression.
3842        """
3843        if not expressions:
3844            return self if not copy else self.copy()
3845
3846        return _apply_child_list_builder(
3847            *expressions,
3848            instance=self,
3849            arg="group",
3850            append=append,
3851            copy=copy,
3852            prefix="GROUP BY",
3853            into=Group,
3854            dialect=dialect,
3855            **opts,
3856        )
3857
3858    def sort_by(
3859        self,
3860        *expressions: t.Optional[ExpOrStr],
3861        append: bool = True,
3862        dialect: DialectType = None,
3863        copy: bool = True,
3864        **opts,
3865    ) -> Select:
3866        """
3867        Set the SORT BY expression.
3868
3869        Example:
3870            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
3871            'SELECT x FROM tbl SORT BY x DESC'
3872
3873        Args:
3874            *expressions: the SQL code strings to parse.
3875                If a `Group` instance is passed, this is used as-is.
3876                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
3877            append: if `True`, add to any existing expressions.
3878                Otherwise, this flattens all the `Order` expression into a single expression.
3879            dialect: the dialect used to parse the input expression.
3880            copy: if `False`, modify this expression instance in-place.
3881            opts: other options to use to parse the input expressions.
3882
3883        Returns:
3884            The modified Select expression.
3885        """
3886        return _apply_child_list_builder(
3887            *expressions,
3888            instance=self,
3889            arg="sort",
3890            append=append,
3891            copy=copy,
3892            prefix="SORT BY",
3893            into=Sort,
3894            dialect=dialect,
3895            **opts,
3896        )
3897
3898    def cluster_by(
3899        self,
3900        *expressions: t.Optional[ExpOrStr],
3901        append: bool = True,
3902        dialect: DialectType = None,
3903        copy: bool = True,
3904        **opts,
3905    ) -> Select:
3906        """
3907        Set the CLUSTER BY expression.
3908
3909        Example:
3910            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
3911            'SELECT x FROM tbl CLUSTER BY x DESC'
3912
3913        Args:
3914            *expressions: the SQL code strings to parse.
3915                If a `Group` instance is passed, this is used as-is.
3916                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
3917            append: if `True`, add to any existing expressions.
3918                Otherwise, this flattens all the `Order` expression into a single expression.
3919            dialect: the dialect used to parse the input expression.
3920            copy: if `False`, modify this expression instance in-place.
3921            opts: other options to use to parse the input expressions.
3922
3923        Returns:
3924            The modified Select expression.
3925        """
3926        return _apply_child_list_builder(
3927            *expressions,
3928            instance=self,
3929            arg="cluster",
3930            append=append,
3931            copy=copy,
3932            prefix="CLUSTER BY",
3933            into=Cluster,
3934            dialect=dialect,
3935            **opts,
3936        )
3937
3938    def select(
3939        self,
3940        *expressions: t.Optional[ExpOrStr],
3941        append: bool = True,
3942        dialect: DialectType = None,
3943        copy: bool = True,
3944        **opts,
3945    ) -> Select:
3946        return _apply_list_builder(
3947            *expressions,
3948            instance=self,
3949            arg="expressions",
3950            append=append,
3951            dialect=dialect,
3952            into=Expression,
3953            copy=copy,
3954            **opts,
3955        )
3956
3957    def lateral(
3958        self,
3959        *expressions: t.Optional[ExpOrStr],
3960        append: bool = True,
3961        dialect: DialectType = None,
3962        copy: bool = True,
3963        **opts,
3964    ) -> Select:
3965        """
3966        Append to or set the LATERAL expressions.
3967
3968        Example:
3969            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3970            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3971
3972        Args:
3973            *expressions: the SQL code strings to parse.
3974                If an `Expression` instance is passed, it will be used as-is.
3975            append: if `True`, add to any existing expressions.
3976                Otherwise, this resets the expressions.
3977            dialect: the dialect used to parse the input expressions.
3978            copy: if `False`, modify this expression instance in-place.
3979            opts: other options to use to parse the input expressions.
3980
3981        Returns:
3982            The modified Select expression.
3983        """
3984        return _apply_list_builder(
3985            *expressions,
3986            instance=self,
3987            arg="laterals",
3988            append=append,
3989            into=Lateral,
3990            prefix="LATERAL VIEW",
3991            dialect=dialect,
3992            copy=copy,
3993            **opts,
3994        )
3995
3996    def join(
3997        self,
3998        expression: ExpOrStr,
3999        on: t.Optional[ExpOrStr] = None,
4000        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
4001        append: bool = True,
4002        join_type: t.Optional[str] = None,
4003        join_alias: t.Optional[Identifier | str] = None,
4004        dialect: DialectType = None,
4005        copy: bool = True,
4006        **opts,
4007    ) -> Select:
4008        """
4009        Append to or set the JOIN expressions.
4010
4011        Example:
4012            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
4013            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
4014
4015            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
4016            'SELECT 1 FROM a JOIN b USING (x, y, z)'
4017
4018            Use `join_type` to change the type of join:
4019
4020            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
4021            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
4022
4023        Args:
4024            expression: the SQL code string to parse.
4025                If an `Expression` instance is passed, it will be used as-is.
4026            on: optionally specify the join "on" criteria as a SQL string.
4027                If an `Expression` instance is passed, it will be used as-is.
4028            using: optionally specify the join "using" criteria as a SQL string.
4029                If an `Expression` instance is passed, it will be used as-is.
4030            append: if `True`, add to any existing expressions.
4031                Otherwise, this resets the expressions.
4032            join_type: if set, alter the parsed join type.
4033            join_alias: an optional alias for the joined source.
4034            dialect: the dialect used to parse the input expressions.
4035            copy: if `False`, modify this expression instance in-place.
4036            opts: other options to use to parse the input expressions.
4037
4038        Returns:
4039            Select: the modified expression.
4040        """
4041        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
4042
4043        try:
4044            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
4045        except ParseError:
4046            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
4047
4048        join = expression if isinstance(expression, Join) else Join(this=expression)
4049
4050        if isinstance(join.this, Select):
4051            join.this.replace(join.this.subquery())
4052
4053        if join_type:
4054            method: t.Optional[Token]
4055            side: t.Optional[Token]
4056            kind: t.Optional[Token]
4057
4058            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
4059
4060            if method:
4061                join.set("method", method.text)
4062            if side:
4063                join.set("side", side.text)
4064            if kind:
4065                join.set("kind", kind.text)
4066
4067        if on:
4068            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
4069            join.set("on", on)
4070
4071        if using:
4072            join = _apply_list_builder(
4073                *ensure_list(using),
4074                instance=join,
4075                arg="using",
4076                append=append,
4077                copy=copy,
4078                into=Identifier,
4079                **opts,
4080            )
4081
4082        if join_alias:
4083            join.set("this", alias_(join.this, join_alias, table=True))
4084
4085        return _apply_list_builder(
4086            join,
4087            instance=self,
4088            arg="joins",
4089            append=append,
4090            copy=copy,
4091            **opts,
4092        )
4093
4094    def having(
4095        self,
4096        *expressions: t.Optional[ExpOrStr],
4097        append: bool = True,
4098        dialect: DialectType = None,
4099        copy: bool = True,
4100        **opts,
4101    ) -> Select:
4102        """
4103        Append to or set the HAVING expressions.
4104
4105        Example:
4106            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
4107            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
4108
4109        Args:
4110            *expressions: the SQL code strings to parse.
4111                If an `Expression` instance is passed, it will be used as-is.
4112                Multiple expressions are combined with an AND operator.
4113            append: if `True`, AND the new expressions to any existing expression.
4114                Otherwise, this resets the expression.
4115            dialect: the dialect used to parse the input expressions.
4116            copy: if `False`, modify this expression instance in-place.
4117            opts: other options to use to parse the input expressions.
4118
4119        Returns:
4120            The modified Select expression.
4121        """
4122        return _apply_conjunction_builder(
4123            *expressions,
4124            instance=self,
4125            arg="having",
4126            append=append,
4127            into=Having,
4128            dialect=dialect,
4129            copy=copy,
4130            **opts,
4131        )
4132
4133    def window(
4134        self,
4135        *expressions: t.Optional[ExpOrStr],
4136        append: bool = True,
4137        dialect: DialectType = None,
4138        copy: bool = True,
4139        **opts,
4140    ) -> Select:
4141        return _apply_list_builder(
4142            *expressions,
4143            instance=self,
4144            arg="windows",
4145            append=append,
4146            into=Window,
4147            dialect=dialect,
4148            copy=copy,
4149            **opts,
4150        )
4151
4152    def qualify(
4153        self,
4154        *expressions: t.Optional[ExpOrStr],
4155        append: bool = True,
4156        dialect: DialectType = None,
4157        copy: bool = True,
4158        **opts,
4159    ) -> Select:
4160        return _apply_conjunction_builder(
4161            *expressions,
4162            instance=self,
4163            arg="qualify",
4164            append=append,
4165            into=Qualify,
4166            dialect=dialect,
4167            copy=copy,
4168            **opts,
4169        )
4170
4171    def distinct(
4172        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
4173    ) -> Select:
4174        """
4175        Set the OFFSET expression.
4176
4177        Example:
4178            >>> Select().from_("tbl").select("x").distinct().sql()
4179            'SELECT DISTINCT x FROM tbl'
4180
4181        Args:
4182            ons: the expressions to distinct on
4183            distinct: whether the Select should be distinct
4184            copy: if `False`, modify this expression instance in-place.
4185
4186        Returns:
4187            Select: the modified expression.
4188        """
4189        instance = maybe_copy(self, copy)
4190        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
4191        instance.set("distinct", Distinct(on=on) if distinct else None)
4192        return instance
4193
4194    def ctas(
4195        self,
4196        table: ExpOrStr,
4197        properties: t.Optional[t.Dict] = None,
4198        dialect: DialectType = None,
4199        copy: bool = True,
4200        **opts,
4201    ) -> Create:
4202        """
4203        Convert this expression to a CREATE TABLE AS statement.
4204
4205        Example:
4206            >>> Select().select("*").from_("tbl").ctas("x").sql()
4207            'CREATE TABLE x AS SELECT * FROM tbl'
4208
4209        Args:
4210            table: the SQL code string to parse as the table name.
4211                If another `Expression` instance is passed, it will be used as-is.
4212            properties: an optional mapping of table properties
4213            dialect: the dialect used to parse the input table.
4214            copy: if `False`, modify this expression instance in-place.
4215            opts: other options to use to parse the input table.
4216
4217        Returns:
4218            The new Create expression.
4219        """
4220        instance = maybe_copy(self, copy)
4221        table_expression = maybe_parse(table, into=Table, dialect=dialect, **opts)
4222
4223        properties_expression = None
4224        if properties:
4225            properties_expression = Properties.from_dict(properties)
4226
4227        return Create(
4228            this=table_expression,
4229            kind="TABLE",
4230            expression=instance,
4231            properties=properties_expression,
4232        )
4233
4234    def lock(self, update: bool = True, copy: bool = True) -> Select:
4235        """
4236        Set the locking read mode for this expression.
4237
4238        Examples:
4239            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
4240            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
4241
4242            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
4243            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
4244
4245        Args:
4246            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
4247            copy: if `False`, modify this expression instance in-place.
4248
4249        Returns:
4250            The modified expression.
4251        """
4252        inst = maybe_copy(self, copy)
4253        inst.set("locks", [Lock(update=update)])
4254
4255        return inst
4256
4257    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
4258        """
4259        Set hints for this expression.
4260
4261        Examples:
4262            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
4263            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
4264
4265        Args:
4266            hints: The SQL code strings to parse as the hints.
4267                If an `Expression` instance is passed, it will be used as-is.
4268            dialect: The dialect used to parse the hints.
4269            copy: If `False`, modify this expression instance in-place.
4270
4271        Returns:
4272            The modified expression.
4273        """
4274        inst = maybe_copy(self, copy)
4275        inst.set(
4276            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
4277        )
4278
4279        return inst
4280
4281    @property
4282    def named_selects(self) -> t.List[str]:
4283        return [e.output_name for e in self.expressions if e.alias_or_name]
4284
4285    @property
4286    def is_star(self) -> bool:
4287        return any(expression.is_star for expression in self.expressions)
4288
4289    @property
4290    def selects(self) -> t.List[Expression]:
4291        return self.expressions
arg_types = {'with': False, 'kind': False, 'expressions': False, 'hint': False, 'distinct': False, 'into': False, 'from': False, 'operation_modifiers': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
def from_( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3782    def from_(
3783        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
3784    ) -> Select:
3785        """
3786        Set the FROM expression.
3787
3788        Example:
3789            >>> Select().from_("tbl").select("x").sql()
3790            'SELECT x FROM tbl'
3791
3792        Args:
3793            expression : the SQL code strings to parse.
3794                If a `From` instance is passed, this is used as-is.
3795                If another `Expression` instance is passed, it will be wrapped in a `From`.
3796            dialect: the dialect used to parse the input expression.
3797            copy: if `False`, modify this expression instance in-place.
3798            opts: other options to use to parse the input expressions.
3799
3800        Returns:
3801            The modified Select expression.
3802        """
3803        return _apply_builder(
3804            expression=expression,
3805            instance=self,
3806            arg="from",
3807            into=From,
3808            prefix="FROM",
3809            dialect=dialect,
3810            copy=copy,
3811            **opts,
3812        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3814    def group_by(
3815        self,
3816        *expressions: t.Optional[ExpOrStr],
3817        append: bool = True,
3818        dialect: DialectType = None,
3819        copy: bool = True,
3820        **opts,
3821    ) -> Select:
3822        """
3823        Set the GROUP BY expression.
3824
3825        Example:
3826            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
3827            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
3828
3829        Args:
3830            *expressions: the SQL code strings to parse.
3831                If a `Group` instance is passed, this is used as-is.
3832                If another `Expression` instance is passed, it will be wrapped in a `Group`.
3833                If nothing is passed in then a group by is not applied to the expression
3834            append: if `True`, add to any existing expressions.
3835                Otherwise, this flattens all the `Group` expression into a single expression.
3836            dialect: the dialect used to parse the input expression.
3837            copy: if `False`, modify this expression instance in-place.
3838            opts: other options to use to parse the input expressions.
3839
3840        Returns:
3841            The modified Select expression.
3842        """
3843        if not expressions:
3844            return self if not copy else self.copy()
3845
3846        return _apply_child_list_builder(
3847            *expressions,
3848            instance=self,
3849            arg="group",
3850            append=append,
3851            copy=copy,
3852            prefix="GROUP BY",
3853            into=Group,
3854            dialect=dialect,
3855            **opts,
3856        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3858    def sort_by(
3859        self,
3860        *expressions: t.Optional[ExpOrStr],
3861        append: bool = True,
3862        dialect: DialectType = None,
3863        copy: bool = True,
3864        **opts,
3865    ) -> Select:
3866        """
3867        Set the SORT BY expression.
3868
3869        Example:
3870            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
3871            'SELECT x FROM tbl SORT BY x DESC'
3872
3873        Args:
3874            *expressions: the SQL code strings to parse.
3875                If a `Group` instance is passed, this is used as-is.
3876                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
3877            append: if `True`, add to any existing expressions.
3878                Otherwise, this flattens all the `Order` expression into a single expression.
3879            dialect: the dialect used to parse the input expression.
3880            copy: if `False`, modify this expression instance in-place.
3881            opts: other options to use to parse the input expressions.
3882
3883        Returns:
3884            The modified Select expression.
3885        """
3886        return _apply_child_list_builder(
3887            *expressions,
3888            instance=self,
3889            arg="sort",
3890            append=append,
3891            copy=copy,
3892            prefix="SORT BY",
3893            into=Sort,
3894            dialect=dialect,
3895            **opts,
3896        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3898    def cluster_by(
3899        self,
3900        *expressions: t.Optional[ExpOrStr],
3901        append: bool = True,
3902        dialect: DialectType = None,
3903        copy: bool = True,
3904        **opts,
3905    ) -> Select:
3906        """
3907        Set the CLUSTER BY expression.
3908
3909        Example:
3910            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
3911            'SELECT x FROM tbl CLUSTER BY x DESC'
3912
3913        Args:
3914            *expressions: the SQL code strings to parse.
3915                If a `Group` instance is passed, this is used as-is.
3916                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
3917            append: if `True`, add to any existing expressions.
3918                Otherwise, this flattens all the `Order` expression into a single expression.
3919            dialect: the dialect used to parse the input expression.
3920            copy: if `False`, modify this expression instance in-place.
3921            opts: other options to use to parse the input expressions.
3922
3923        Returns:
3924            The modified Select expression.
3925        """
3926        return _apply_child_list_builder(
3927            *expressions,
3928            instance=self,
3929            arg="cluster",
3930            append=append,
3931            copy=copy,
3932            prefix="CLUSTER BY",
3933            into=Cluster,
3934            dialect=dialect,
3935            **opts,
3936        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3938    def select(
3939        self,
3940        *expressions: t.Optional[ExpOrStr],
3941        append: bool = True,
3942        dialect: DialectType = None,
3943        copy: bool = True,
3944        **opts,
3945    ) -> Select:
3946        return _apply_list_builder(
3947            *expressions,
3948            instance=self,
3949            arg="expressions",
3950            append=append,
3951            dialect=dialect,
3952            into=Expression,
3953            copy=copy,
3954            **opts,
3955        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

def lateral( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3957    def lateral(
3958        self,
3959        *expressions: t.Optional[ExpOrStr],
3960        append: bool = True,
3961        dialect: DialectType = None,
3962        copy: bool = True,
3963        **opts,
3964    ) -> Select:
3965        """
3966        Append to or set the LATERAL expressions.
3967
3968        Example:
3969            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3970            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3971
3972        Args:
3973            *expressions: the SQL code strings to parse.
3974                If an `Expression` instance is passed, it will be used as-is.
3975            append: if `True`, add to any existing expressions.
3976                Otherwise, this resets the expressions.
3977            dialect: the dialect used to parse the input expressions.
3978            copy: if `False`, modify this expression instance in-place.
3979            opts: other options to use to parse the input expressions.
3980
3981        Returns:
3982            The modified Select expression.
3983        """
3984        return _apply_list_builder(
3985            *expressions,
3986            instance=self,
3987            arg="laterals",
3988            append=append,
3989            into=Lateral,
3990            prefix="LATERAL VIEW",
3991            dialect=dialect,
3992            copy=copy,
3993            **opts,
3994        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, Expression], on: Union[str, Expression, NoneType] = None, using: Union[str, Expression, Collection[Union[str, Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3996    def join(
3997        self,
3998        expression: ExpOrStr,
3999        on: t.Optional[ExpOrStr] = None,
4000        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
4001        append: bool = True,
4002        join_type: t.Optional[str] = None,
4003        join_alias: t.Optional[Identifier | str] = None,
4004        dialect: DialectType = None,
4005        copy: bool = True,
4006        **opts,
4007    ) -> Select:
4008        """
4009        Append to or set the JOIN expressions.
4010
4011        Example:
4012            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
4013            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
4014
4015            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
4016            'SELECT 1 FROM a JOIN b USING (x, y, z)'
4017
4018            Use `join_type` to change the type of join:
4019
4020            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
4021            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
4022
4023        Args:
4024            expression: the SQL code string to parse.
4025                If an `Expression` instance is passed, it will be used as-is.
4026            on: optionally specify the join "on" criteria as a SQL string.
4027                If an `Expression` instance is passed, it will be used as-is.
4028            using: optionally specify the join "using" criteria as a SQL string.
4029                If an `Expression` instance is passed, it will be used as-is.
4030            append: if `True`, add to any existing expressions.
4031                Otherwise, this resets the expressions.
4032            join_type: if set, alter the parsed join type.
4033            join_alias: an optional alias for the joined source.
4034            dialect: the dialect used to parse the input expressions.
4035            copy: if `False`, modify this expression instance in-place.
4036            opts: other options to use to parse the input expressions.
4037
4038        Returns:
4039            Select: the modified expression.
4040        """
4041        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
4042
4043        try:
4044            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
4045        except ParseError:
4046            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
4047
4048        join = expression if isinstance(expression, Join) else Join(this=expression)
4049
4050        if isinstance(join.this, Select):
4051            join.this.replace(join.this.subquery())
4052
4053        if join_type:
4054            method: t.Optional[Token]
4055            side: t.Optional[Token]
4056            kind: t.Optional[Token]
4057
4058            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
4059
4060            if method:
4061                join.set("method", method.text)
4062            if side:
4063                join.set("side", side.text)
4064            if kind:
4065                join.set("kind", kind.text)
4066
4067        if on:
4068            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
4069            join.set("on", on)
4070
4071        if using:
4072            join = _apply_list_builder(
4073                *ensure_list(using),
4074                instance=join,
4075                arg="using",
4076                append=append,
4077                copy=copy,
4078                into=Identifier,
4079                **opts,
4080            )
4081
4082        if join_alias:
4083            join.set("this", alias_(join.this, join_alias, table=True))
4084
4085        return _apply_list_builder(
4086            join,
4087            instance=self,
4088            arg="joins",
4089            append=append,
4090            copy=copy,
4091            **opts,
4092        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
4094    def having(
4095        self,
4096        *expressions: t.Optional[ExpOrStr],
4097        append: bool = True,
4098        dialect: DialectType = None,
4099        copy: bool = True,
4100        **opts,
4101    ) -> Select:
4102        """
4103        Append to or set the HAVING expressions.
4104
4105        Example:
4106            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
4107            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
4108
4109        Args:
4110            *expressions: the SQL code strings to parse.
4111                If an `Expression` instance is passed, it will be used as-is.
4112                Multiple expressions are combined with an AND operator.
4113            append: if `True`, AND the new expressions to any existing expression.
4114                Otherwise, this resets the expression.
4115            dialect: the dialect used to parse the input expressions.
4116            copy: if `False`, modify this expression instance in-place.
4117            opts: other options to use to parse the input expressions.
4118
4119        Returns:
4120            The modified Select expression.
4121        """
4122        return _apply_conjunction_builder(
4123            *expressions,
4124            instance=self,
4125            arg="having",
4126            append=append,
4127            into=Having,
4128            dialect=dialect,
4129            copy=copy,
4130            **opts,
4131        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
4133    def window(
4134        self,
4135        *expressions: t.Optional[ExpOrStr],
4136        append: bool = True,
4137        dialect: DialectType = None,
4138        copy: bool = True,
4139        **opts,
4140    ) -> Select:
4141        return _apply_list_builder(
4142            *expressions,
4143            instance=self,
4144            arg="windows",
4145            append=append,
4146            into=Window,
4147            dialect=dialect,
4148            copy=copy,
4149            **opts,
4150        )
def qualify( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
4152    def qualify(
4153        self,
4154        *expressions: t.Optional[ExpOrStr],
4155        append: bool = True,
4156        dialect: DialectType = None,
4157        copy: bool = True,
4158        **opts,
4159    ) -> Select:
4160        return _apply_conjunction_builder(
4161            *expressions,
4162            instance=self,
4163            arg="qualify",
4164            append=append,
4165            into=Qualify,
4166            dialect=dialect,
4167            copy=copy,
4168            **opts,
4169        )
def distinct( self, *ons: Union[str, Expression, NoneType], distinct: bool = True, copy: bool = True) -> Select:
4171    def distinct(
4172        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
4173    ) -> Select:
4174        """
4175        Set the OFFSET expression.
4176
4177        Example:
4178            >>> Select().from_("tbl").select("x").distinct().sql()
4179            'SELECT DISTINCT x FROM tbl'
4180
4181        Args:
4182            ons: the expressions to distinct on
4183            distinct: whether the Select should be distinct
4184            copy: if `False`, modify this expression instance in-place.
4185
4186        Returns:
4187            Select: the modified expression.
4188        """
4189        instance = maybe_copy(self, copy)
4190        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
4191        instance.set("distinct", Distinct(on=on) if distinct else None)
4192        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Create:
4194    def ctas(
4195        self,
4196        table: ExpOrStr,
4197        properties: t.Optional[t.Dict] = None,
4198        dialect: DialectType = None,
4199        copy: bool = True,
4200        **opts,
4201    ) -> Create:
4202        """
4203        Convert this expression to a CREATE TABLE AS statement.
4204
4205        Example:
4206            >>> Select().select("*").from_("tbl").ctas("x").sql()
4207            'CREATE TABLE x AS SELECT * FROM tbl'
4208
4209        Args:
4210            table: the SQL code string to parse as the table name.
4211                If another `Expression` instance is passed, it will be used as-is.
4212            properties: an optional mapping of table properties
4213            dialect: the dialect used to parse the input table.
4214            copy: if `False`, modify this expression instance in-place.
4215            opts: other options to use to parse the input table.
4216
4217        Returns:
4218            The new Create expression.
4219        """
4220        instance = maybe_copy(self, copy)
4221        table_expression = maybe_parse(table, into=Table, dialect=dialect, **opts)
4222
4223        properties_expression = None
4224        if properties:
4225            properties_expression = Properties.from_dict(properties)
4226
4227        return Create(
4228            this=table_expression,
4229            kind="TABLE",
4230            expression=instance,
4231            properties=properties_expression,
4232        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> Select:
4234    def lock(self, update: bool = True, copy: bool = True) -> Select:
4235        """
4236        Set the locking read mode for this expression.
4237
4238        Examples:
4239            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
4240            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
4241
4242            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
4243            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
4244
4245        Args:
4246            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
4247            copy: if `False`, modify this expression instance in-place.
4248
4249        Returns:
4250            The modified expression.
4251        """
4252        inst = maybe_copy(self, copy)
4253        inst.set("locks", [Lock(update=update)])
4254
4255        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

def hint( self, *hints: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True) -> Select:
4257    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
4258        """
4259        Set hints for this expression.
4260
4261        Examples:
4262            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
4263            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
4264
4265        Args:
4266            hints: The SQL code strings to parse as the hints.
4267                If an `Expression` instance is passed, it will be used as-is.
4268            dialect: The dialect used to parse the hints.
4269            copy: If `False`, modify this expression instance in-place.
4270
4271        Returns:
4272            The modified expression.
4273        """
4274        inst = maybe_copy(self, copy)
4275        inst.set(
4276            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
4277        )
4278
4279        return inst

Set hints for this expression.

Examples:
>>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
'SELECT /*+ BROADCAST(y) */ x FROM tbl'
Arguments:
  • hints: The SQL code strings to parse as the hints. If an Expression instance is passed, it will be used as-is.
  • dialect: The dialect used to parse the hints.
  • copy: If False, modify this expression instance in-place.
Returns:

The modified expression.

named_selects: List[str]
4281    @property
4282    def named_selects(self) -> t.List[str]:
4283        return [e.output_name for e in self.expressions if e.alias_or_name]

Returns the output names of the query's projections.

is_star: bool
4285    @property
4286    def is_star(self) -> bool:
4287        return any(expression.is_star for expression in self.expressions)

Checks whether an expression is a star.

selects: List[Expression]
4289    @property
4290    def selects(self) -> t.List[Expression]:
4291        return self.expressions

Returns the query's projections.

key = 'select'
UNWRAPPED_QUERIES = (<class 'Select'>, <class 'SetOperation'>)
class Subquery(DerivedTable, Query):
4297class Subquery(DerivedTable, Query):
4298    arg_types = {
4299        "this": True,
4300        "alias": False,
4301        "with": False,
4302        **QUERY_MODIFIERS,
4303    }
4304
4305    def unnest(self):
4306        """Returns the first non subquery."""
4307        expression = self
4308        while isinstance(expression, Subquery):
4309            expression = expression.this
4310        return expression
4311
4312    def unwrap(self) -> Subquery:
4313        expression = self
4314        while expression.same_parent and expression.is_wrapper:
4315            expression = t.cast(Subquery, expression.parent)
4316        return expression
4317
4318    def select(
4319        self,
4320        *expressions: t.Optional[ExpOrStr],
4321        append: bool = True,
4322        dialect: DialectType = None,
4323        copy: bool = True,
4324        **opts,
4325    ) -> Subquery:
4326        this = maybe_copy(self, copy)
4327        this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
4328        return this
4329
4330    @property
4331    def is_wrapper(self) -> bool:
4332        """
4333        Whether this Subquery acts as a simple wrapper around another expression.
4334
4335        SELECT * FROM (((SELECT * FROM t)))
4336                      ^
4337                      This corresponds to a "wrapper" Subquery node
4338        """
4339        return all(v is None for k, v in self.args.items() if k != "this")
4340
4341    @property
4342    def is_star(self) -> bool:
4343        return self.this.is_star
4344
4345    @property
4346    def output_name(self) -> str:
4347        return self.alias
arg_types = {'this': True, 'alias': False, 'with': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'prewhere': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False, 'options': False}
def unnest(self):
4305    def unnest(self):
4306        """Returns the first non subquery."""
4307        expression = self
4308        while isinstance(expression, Subquery):
4309            expression = expression.this
4310        return expression

Returns the first non subquery.

def unwrap(self) -> Subquery:
4312    def unwrap(self) -> Subquery:
4313        expression = self
4314        while expression.same_parent and expression.is_wrapper:
4315            expression = t.cast(Subquery, expression.parent)
4316        return expression
def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Subquery:
4318    def select(
4319        self,
4320        *expressions: t.Optional[ExpOrStr],
4321        append: bool = True,
4322        dialect: DialectType = None,
4323        copy: bool = True,
4324        **opts,
4325    ) -> Subquery:
4326        this = maybe_copy(self, copy)
4327        this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
4328        return this

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Query expression.

is_wrapper: bool
4330    @property
4331    def is_wrapper(self) -> bool:
4332        """
4333        Whether this Subquery acts as a simple wrapper around another expression.
4334
4335        SELECT * FROM (((SELECT * FROM t)))
4336                      ^
4337                      This corresponds to a "wrapper" Subquery node
4338        """
4339        return all(v is None for k, v in self.args.items() if k != "this")

Whether this Subquery acts as a simple wrapper around another expression.

SELECT * FROM (((SELECT * FROM t))) ^ This corresponds to a "wrapper" Subquery node

is_star: bool
4341    @property
4342    def is_star(self) -> bool:
4343        return self.this.is_star

Checks whether an expression is a star.

output_name: str
4345    @property
4346    def output_name(self) -> str:
4347        return self.alias

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'subquery'
class TableSample(Expression):
4350class TableSample(Expression):
4351    arg_types = {
4352        "expressions": False,
4353        "method": False,
4354        "bucket_numerator": False,
4355        "bucket_denominator": False,
4356        "bucket_field": False,
4357        "percent": False,
4358        "rows": False,
4359        "size": False,
4360        "seed": False,
4361    }
arg_types = {'expressions': False, 'method': False, 'bucket_numerator': False, 'bucket_denominator': False, 'bucket_field': False, 'percent': False, 'rows': False, 'size': False, 'seed': False}
key = 'tablesample'
class Tag(Expression):
4364class Tag(Expression):
4365    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
4366
4367    arg_types = {
4368        "this": False,
4369        "prefix": False,
4370        "postfix": False,
4371    }

Tags are used for generating arbitrary sql like SELECT x.

arg_types = {'this': False, 'prefix': False, 'postfix': False}
key = 'tag'
class Pivot(Expression):
4376class Pivot(Expression):
4377    arg_types = {
4378        "this": False,
4379        "alias": False,
4380        "expressions": False,
4381        "fields": False,
4382        "unpivot": False,
4383        "using": False,
4384        "group": False,
4385        "columns": False,
4386        "include_nulls": False,
4387        "default_on_null": False,
4388        "into": False,
4389    }
4390
4391    @property
4392    def unpivot(self) -> bool:
4393        return bool(self.args.get("unpivot"))
4394
4395    @property
4396    def fields(self) -> t.List[Expression]:
4397        return self.args.get("fields", [])
arg_types = {'this': False, 'alias': False, 'expressions': False, 'fields': False, 'unpivot': False, 'using': False, 'group': False, 'columns': False, 'include_nulls': False, 'default_on_null': False, 'into': False}
unpivot: bool
4391    @property
4392    def unpivot(self) -> bool:
4393        return bool(self.args.get("unpivot"))
fields: List[Expression]
4395    @property
4396    def fields(self) -> t.List[Expression]:
4397        return self.args.get("fields", [])
key = 'pivot'
class UnpivotColumns(Expression):
4402class UnpivotColumns(Expression):
4403    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'unpivotcolumns'
class Window(Condition):
4406class Window(Condition):
4407    arg_types = {
4408        "this": True,
4409        "partition_by": False,
4410        "order": False,
4411        "spec": False,
4412        "alias": False,
4413        "over": False,
4414        "first": False,
4415    }
arg_types = {'this': True, 'partition_by': False, 'order': False, 'spec': False, 'alias': False, 'over': False, 'first': False}
key = 'window'
class WindowSpec(Expression):
4418class WindowSpec(Expression):
4419    arg_types = {
4420        "kind": False,
4421        "start": False,
4422        "start_side": False,
4423        "end": False,
4424        "end_side": False,
4425        "exclude": False,
4426    }
arg_types = {'kind': False, 'start': False, 'start_side': False, 'end': False, 'end_side': False, 'exclude': False}
key = 'windowspec'
class PreWhere(Expression):
4429class PreWhere(Expression):
4430    pass
key = 'prewhere'
class Where(Expression):
4433class Where(Expression):
4434    pass
key = 'where'
class Star(Expression):
4437class Star(Expression):
4438    arg_types = {"except": False, "replace": False, "rename": False}
4439
4440    @property
4441    def name(self) -> str:
4442        return "*"
4443
4444    @property
4445    def output_name(self) -> str:
4446        return self.name
arg_types = {'except': False, 'replace': False, 'rename': False}
name: str
4440    @property
4441    def name(self) -> str:
4442        return "*"
output_name: str
4444    @property
4445    def output_name(self) -> str:
4446        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'star'
class Parameter(Condition):
4449class Parameter(Condition):
4450    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'parameter'
class SessionParameter(Condition):
4453class SessionParameter(Condition):
4454    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'sessionparameter'
class Placeholder(Condition):
4458class Placeholder(Condition):
4459    arg_types = {"this": False, "kind": False, "widget": False}
4460
4461    @property
4462    def name(self) -> str:
4463        return self.this or "?"
arg_types = {'this': False, 'kind': False, 'widget': False}
name: str
4461    @property
4462    def name(self) -> str:
4463        return self.this or "?"
key = 'placeholder'
class Null(Condition):
4466class Null(Condition):
4467    arg_types: t.Dict[str, t.Any] = {}
4468
4469    @property
4470    def name(self) -> str:
4471        return "NULL"
4472
4473    def to_py(self) -> Lit[None]:
4474        return None
arg_types: Dict[str, Any] = {}
name: str
4469    @property
4470    def name(self) -> str:
4471        return "NULL"
def to_py(self) -> Literal[None]:
4473    def to_py(self) -> Lit[None]:
4474        return None

Returns a Python object equivalent of the SQL node.

key = 'null'
class Boolean(Condition):
4477class Boolean(Condition):
4478    def to_py(self) -> bool:
4479        return self.this
def to_py(self) -> bool:
4478    def to_py(self) -> bool:
4479        return self.this

Returns a Python object equivalent of the SQL node.

key = 'boolean'
class DataTypeParam(Expression):
4482class DataTypeParam(Expression):
4483    arg_types = {"this": True, "expression": False}
4484
4485    @property
4486    def name(self) -> str:
4487        return self.this.name
arg_types = {'this': True, 'expression': False}
name: str
4485    @property
4486    def name(self) -> str:
4487        return self.this.name
key = 'datatypeparam'
class DataType(Expression):
4492class DataType(Expression):
4493    arg_types = {
4494        "this": True,
4495        "expressions": False,
4496        "nested": False,
4497        "values": False,
4498        "prefix": False,
4499        "kind": False,
4500        "nullable": False,
4501    }
4502
4503    class Type(AutoName):
4504        ARRAY = auto()
4505        AGGREGATEFUNCTION = auto()
4506        SIMPLEAGGREGATEFUNCTION = auto()
4507        BIGDECIMAL = auto()
4508        BIGINT = auto()
4509        BIGSERIAL = auto()
4510        BINARY = auto()
4511        BIT = auto()
4512        BLOB = auto()
4513        BOOLEAN = auto()
4514        BPCHAR = auto()
4515        CHAR = auto()
4516        DATE = auto()
4517        DATE32 = auto()
4518        DATEMULTIRANGE = auto()
4519        DATERANGE = auto()
4520        DATETIME = auto()
4521        DATETIME2 = auto()
4522        DATETIME64 = auto()
4523        DECIMAL = auto()
4524        DECIMAL32 = auto()
4525        DECIMAL64 = auto()
4526        DECIMAL128 = auto()
4527        DECIMAL256 = auto()
4528        DOUBLE = auto()
4529        DYNAMIC = auto()
4530        ENUM = auto()
4531        ENUM8 = auto()
4532        ENUM16 = auto()
4533        FIXEDSTRING = auto()
4534        FLOAT = auto()
4535        GEOGRAPHY = auto()
4536        GEOMETRY = auto()
4537        POINT = auto()
4538        RING = auto()
4539        LINESTRING = auto()
4540        MULTILINESTRING = auto()
4541        POLYGON = auto()
4542        MULTIPOLYGON = auto()
4543        HLLSKETCH = auto()
4544        HSTORE = auto()
4545        IMAGE = auto()
4546        INET = auto()
4547        INT = auto()
4548        INT128 = auto()
4549        INT256 = auto()
4550        INT4MULTIRANGE = auto()
4551        INT4RANGE = auto()
4552        INT8MULTIRANGE = auto()
4553        INT8RANGE = auto()
4554        INTERVAL = auto()
4555        IPADDRESS = auto()
4556        IPPREFIX = auto()
4557        IPV4 = auto()
4558        IPV6 = auto()
4559        JSON = auto()
4560        JSONB = auto()
4561        LIST = auto()
4562        LONGBLOB = auto()
4563        LONGTEXT = auto()
4564        LOWCARDINALITY = auto()
4565        MAP = auto()
4566        MEDIUMBLOB = auto()
4567        MEDIUMINT = auto()
4568        MEDIUMTEXT = auto()
4569        MONEY = auto()
4570        NAME = auto()
4571        NCHAR = auto()
4572        NESTED = auto()
4573        NOTHING = auto()
4574        NULL = auto()
4575        NUMMULTIRANGE = auto()
4576        NUMRANGE = auto()
4577        NVARCHAR = auto()
4578        OBJECT = auto()
4579        RANGE = auto()
4580        ROWVERSION = auto()
4581        SERIAL = auto()
4582        SET = auto()
4583        SMALLDATETIME = auto()
4584        SMALLINT = auto()
4585        SMALLMONEY = auto()
4586        SMALLSERIAL = auto()
4587        STRUCT = auto()
4588        SUPER = auto()
4589        TEXT = auto()
4590        TINYBLOB = auto()
4591        TINYTEXT = auto()
4592        TIME = auto()
4593        TIMETZ = auto()
4594        TIMESTAMP = auto()
4595        TIMESTAMPNTZ = auto()
4596        TIMESTAMPLTZ = auto()
4597        TIMESTAMPTZ = auto()
4598        TIMESTAMP_S = auto()
4599        TIMESTAMP_MS = auto()
4600        TIMESTAMP_NS = auto()
4601        TINYINT = auto()
4602        TSMULTIRANGE = auto()
4603        TSRANGE = auto()
4604        TSTZMULTIRANGE = auto()
4605        TSTZRANGE = auto()
4606        UBIGINT = auto()
4607        UINT = auto()
4608        UINT128 = auto()
4609        UINT256 = auto()
4610        UMEDIUMINT = auto()
4611        UDECIMAL = auto()
4612        UDOUBLE = auto()
4613        UNION = auto()
4614        UNKNOWN = auto()  # Sentinel value, useful for type annotation
4615        USERDEFINED = "USER-DEFINED"
4616        USMALLINT = auto()
4617        UTINYINT = auto()
4618        UUID = auto()
4619        VARBINARY = auto()
4620        VARCHAR = auto()
4621        VARIANT = auto()
4622        VECTOR = auto()
4623        XML = auto()
4624        YEAR = auto()
4625        TDIGEST = auto()
4626
4627    STRUCT_TYPES = {
4628        Type.NESTED,
4629        Type.OBJECT,
4630        Type.STRUCT,
4631        Type.UNION,
4632    }
4633
4634    ARRAY_TYPES = {
4635        Type.ARRAY,
4636        Type.LIST,
4637    }
4638
4639    NESTED_TYPES = {
4640        *STRUCT_TYPES,
4641        *ARRAY_TYPES,
4642        Type.MAP,
4643    }
4644
4645    TEXT_TYPES = {
4646        Type.CHAR,
4647        Type.NCHAR,
4648        Type.NVARCHAR,
4649        Type.TEXT,
4650        Type.VARCHAR,
4651        Type.NAME,
4652    }
4653
4654    SIGNED_INTEGER_TYPES = {
4655        Type.BIGINT,
4656        Type.INT,
4657        Type.INT128,
4658        Type.INT256,
4659        Type.MEDIUMINT,
4660        Type.SMALLINT,
4661        Type.TINYINT,
4662    }
4663
4664    UNSIGNED_INTEGER_TYPES = {
4665        Type.UBIGINT,
4666        Type.UINT,
4667        Type.UINT128,
4668        Type.UINT256,
4669        Type.UMEDIUMINT,
4670        Type.USMALLINT,
4671        Type.UTINYINT,
4672    }
4673
4674    INTEGER_TYPES = {
4675        *SIGNED_INTEGER_TYPES,
4676        *UNSIGNED_INTEGER_TYPES,
4677        Type.BIT,
4678    }
4679
4680    FLOAT_TYPES = {
4681        Type.DOUBLE,
4682        Type.FLOAT,
4683    }
4684
4685    REAL_TYPES = {
4686        *FLOAT_TYPES,
4687        Type.BIGDECIMAL,
4688        Type.DECIMAL,
4689        Type.DECIMAL32,
4690        Type.DECIMAL64,
4691        Type.DECIMAL128,
4692        Type.DECIMAL256,
4693        Type.MONEY,
4694        Type.SMALLMONEY,
4695        Type.UDECIMAL,
4696        Type.UDOUBLE,
4697    }
4698
4699    NUMERIC_TYPES = {
4700        *INTEGER_TYPES,
4701        *REAL_TYPES,
4702    }
4703
4704    TEMPORAL_TYPES = {
4705        Type.DATE,
4706        Type.DATE32,
4707        Type.DATETIME,
4708        Type.DATETIME2,
4709        Type.DATETIME64,
4710        Type.SMALLDATETIME,
4711        Type.TIME,
4712        Type.TIMESTAMP,
4713        Type.TIMESTAMPNTZ,
4714        Type.TIMESTAMPLTZ,
4715        Type.TIMESTAMPTZ,
4716        Type.TIMESTAMP_MS,
4717        Type.TIMESTAMP_NS,
4718        Type.TIMESTAMP_S,
4719        Type.TIMETZ,
4720    }
4721
4722    @classmethod
4723    def build(
4724        cls,
4725        dtype: DATA_TYPE,
4726        dialect: DialectType = None,
4727        udt: bool = False,
4728        copy: bool = True,
4729        **kwargs,
4730    ) -> DataType:
4731        """
4732        Constructs a DataType object.
4733
4734        Args:
4735            dtype: the data type of interest.
4736            dialect: the dialect to use for parsing `dtype`, in case it's a string.
4737            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
4738                DataType, thus creating a user-defined type.
4739            copy: whether to copy the data type.
4740            kwargs: additional arguments to pass in the constructor of DataType.
4741
4742        Returns:
4743            The constructed DataType object.
4744        """
4745        from sqlglot import parse_one
4746
4747        if isinstance(dtype, str):
4748            if dtype.upper() == "UNKNOWN":
4749                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
4750
4751            try:
4752                data_type_exp = parse_one(
4753                    dtype, read=dialect, into=DataType, error_level=ErrorLevel.IGNORE
4754                )
4755            except ParseError:
4756                if udt:
4757                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4758                raise
4759        elif isinstance(dtype, (Identifier, Dot)) and udt:
4760            return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4761        elif isinstance(dtype, DataType.Type):
4762            data_type_exp = DataType(this=dtype)
4763        elif isinstance(dtype, DataType):
4764            return maybe_copy(dtype, copy)
4765        else:
4766            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
4767
4768        return DataType(**{**data_type_exp.args, **kwargs})
4769
4770    def is_type(self, *dtypes: DATA_TYPE, check_nullable: bool = False) -> bool:
4771        """
4772        Checks whether this DataType matches one of the provided data types. Nested types or precision
4773        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
4774
4775        Args:
4776            dtypes: the data types to compare this DataType to.
4777            check_nullable: whether to take the NULLABLE type constructor into account for the comparison.
4778                If false, it means that NULLABLE<INT> is equivalent to INT.
4779
4780        Returns:
4781            True, if and only if there is a type in `dtypes` which is equal to this DataType.
4782        """
4783        self_is_nullable = self.args.get("nullable")
4784        for dtype in dtypes:
4785            other_type = DataType.build(dtype, copy=False, udt=True)
4786            other_is_nullable = other_type.args.get("nullable")
4787            if (
4788                other_type.expressions
4789                or (check_nullable and (self_is_nullable or other_is_nullable))
4790                or self.this == DataType.Type.USERDEFINED
4791                or other_type.this == DataType.Type.USERDEFINED
4792            ):
4793                matches = self == other_type
4794            else:
4795                matches = self.this == other_type.this
4796
4797            if matches:
4798                return True
4799        return False
arg_types = {'this': True, 'expressions': False, 'nested': False, 'values': False, 'prefix': False, 'kind': False, 'nullable': False}
STRUCT_TYPES = {<Type.NESTED: 'NESTED'>, <Type.STRUCT: 'STRUCT'>, <Type.OBJECT: 'OBJECT'>, <Type.UNION: 'UNION'>}
ARRAY_TYPES = {<Type.ARRAY: 'ARRAY'>, <Type.LIST: 'LIST'>}
NESTED_TYPES = {<Type.NESTED: 'NESTED'>, <Type.ARRAY: 'ARRAY'>, <Type.LIST: 'LIST'>, <Type.MAP: 'MAP'>, <Type.STRUCT: 'STRUCT'>, <Type.OBJECT: 'OBJECT'>, <Type.UNION: 'UNION'>}
TEXT_TYPES = {<Type.TEXT: 'TEXT'>, <Type.NAME: 'NAME'>, <Type.CHAR: 'CHAR'>, <Type.VARCHAR: 'VARCHAR'>, <Type.NVARCHAR: 'NVARCHAR'>, <Type.NCHAR: 'NCHAR'>}
SIGNED_INTEGER_TYPES = {<Type.TINYINT: 'TINYINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT128: 'INT128'>, <Type.MEDIUMINT: 'MEDIUMINT'>, <Type.INT: 'INT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.INT256: 'INT256'>}
UNSIGNED_INTEGER_TYPES = {<Type.UINT256: 'UINT256'>, <Type.UINT128: 'UINT128'>, <Type.UTINYINT: 'UTINYINT'>, <Type.UBIGINT: 'UBIGINT'>, <Type.UMEDIUMINT: 'UMEDIUMINT'>, <Type.USMALLINT: 'USMALLINT'>, <Type.UINT: 'UINT'>}
INTEGER_TYPES = {<Type.TINYINT: 'TINYINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT128: 'INT128'>, <Type.UINT256: 'UINT256'>, <Type.MEDIUMINT: 'MEDIUMINT'>, <Type.UINT128: 'UINT128'>, <Type.UTINYINT: 'UTINYINT'>, <Type.UBIGINT: 'UBIGINT'>, <Type.INT: 'INT'>, <Type.UMEDIUMINT: 'UMEDIUMINT'>, <Type.USMALLINT: 'USMALLINT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.UINT: 'UINT'>, <Type.INT256: 'INT256'>, <Type.BIT: 'BIT'>}
FLOAT_TYPES = {<Type.DOUBLE: 'DOUBLE'>, <Type.FLOAT: 'FLOAT'>}
REAL_TYPES = {<Type.DECIMAL64: 'DECIMAL64'>, <Type.DECIMAL128: 'DECIMAL128'>, <Type.DOUBLE: 'DOUBLE'>, <Type.MONEY: 'MONEY'>, <Type.DECIMAL256: 'DECIMAL256'>, <Type.UDECIMAL: 'UDECIMAL'>, <Type.DECIMAL: 'DECIMAL'>, <Type.BIGDECIMAL: 'BIGDECIMAL'>, <Type.DECIMAL32: 'DECIMAL32'>, <Type.FLOAT: 'FLOAT'>, <Type.UDOUBLE: 'UDOUBLE'>, <Type.SMALLMONEY: 'SMALLMONEY'>}
NUMERIC_TYPES = {<Type.DECIMAL64: 'DECIMAL64'>, <Type.DECIMAL128: 'DECIMAL128'>, <Type.UINT256: 'UINT256'>, <Type.UINT128: 'UINT128'>, <Type.UTINYINT: 'UTINYINT'>, <Type.UBIGINT: 'UBIGINT'>, <Type.DOUBLE: 'DOUBLE'>, <Type.INT: 'INT'>, <Type.USMALLINT: 'USMALLINT'>, <Type.UDECIMAL: 'UDECIMAL'>, <Type.UINT: 'UINT'>, <Type.BIGDECIMAL: 'BIGDECIMAL'>, <Type.FLOAT: 'FLOAT'>, <Type.BIT: 'BIT'>, <Type.UDOUBLE: 'UDOUBLE'>, <Type.SMALLMONEY: 'SMALLMONEY'>, <Type.TINYINT: 'TINYINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT128: 'INT128'>, <Type.MEDIUMINT: 'MEDIUMINT'>, <Type.UMEDIUMINT: 'UMEDIUMINT'>, <Type.MONEY: 'MONEY'>, <Type.DECIMAL256: 'DECIMAL256'>, <Type.SMALLINT: 'SMALLINT'>, <Type.DECIMAL: 'DECIMAL'>, <Type.DECIMAL32: 'DECIMAL32'>, <Type.INT256: 'INT256'>}
TEMPORAL_TYPES = {<Type.DATE32: 'DATE32'>, <Type.TIMESTAMP_S: 'TIMESTAMP_S'>, <Type.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>, <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>, <Type.TIMESTAMP_NS: 'TIMESTAMP_NS'>, <Type.TIME: 'TIME'>, <Type.DATETIME64: 'DATETIME64'>, <Type.TIMESTAMP: 'TIMESTAMP'>, <Type.TIMESTAMP_MS: 'TIMESTAMP_MS'>, <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>, <Type.DATETIME: 'DATETIME'>, <Type.SMALLDATETIME: 'SMALLDATETIME'>, <Type.DATE: 'DATE'>, <Type.TIMETZ: 'TIMETZ'>, <Type.DATETIME2: 'DATETIME2'>}
@classmethod
def build( cls, dtype: Union[str, Identifier, Dot, DataType, DataType.Type], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, udt: bool = False, copy: bool = True, **kwargs) -> DataType:
4722    @classmethod
4723    def build(
4724        cls,
4725        dtype: DATA_TYPE,
4726        dialect: DialectType = None,
4727        udt: bool = False,
4728        copy: bool = True,
4729        **kwargs,
4730    ) -> DataType:
4731        """
4732        Constructs a DataType object.
4733
4734        Args:
4735            dtype: the data type of interest.
4736            dialect: the dialect to use for parsing `dtype`, in case it's a string.
4737            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
4738                DataType, thus creating a user-defined type.
4739            copy: whether to copy the data type.
4740            kwargs: additional arguments to pass in the constructor of DataType.
4741
4742        Returns:
4743            The constructed DataType object.
4744        """
4745        from sqlglot import parse_one
4746
4747        if isinstance(dtype, str):
4748            if dtype.upper() == "UNKNOWN":
4749                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
4750
4751            try:
4752                data_type_exp = parse_one(
4753                    dtype, read=dialect, into=DataType, error_level=ErrorLevel.IGNORE
4754                )
4755            except ParseError:
4756                if udt:
4757                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4758                raise
4759        elif isinstance(dtype, (Identifier, Dot)) and udt:
4760            return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
4761        elif isinstance(dtype, DataType.Type):
4762            data_type_exp = DataType(this=dtype)
4763        elif isinstance(dtype, DataType):
4764            return maybe_copy(dtype, copy)
4765        else:
4766            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
4767
4768        return DataType(**{**data_type_exp.args, **kwargs})

Constructs a DataType object.

Arguments:
  • dtype: the data type of interest.
  • dialect: the dialect to use for parsing dtype, in case it's a string.
  • udt: when set to True, dtype will be used as-is if it can't be parsed into a DataType, thus creating a user-defined type.
  • copy: whether to copy the data type.
  • kwargs: additional arguments to pass in the constructor of DataType.
Returns:

The constructed DataType object.

def is_type( self, *dtypes: Union[str, Identifier, Dot, DataType, DataType.Type], check_nullable: bool = False) -> bool:
4770    def is_type(self, *dtypes: DATA_TYPE, check_nullable: bool = False) -> bool:
4771        """
4772        Checks whether this DataType matches one of the provided data types. Nested types or precision
4773        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
4774
4775        Args:
4776            dtypes: the data types to compare this DataType to.
4777            check_nullable: whether to take the NULLABLE type constructor into account for the comparison.
4778                If false, it means that NULLABLE<INT> is equivalent to INT.
4779
4780        Returns:
4781            True, if and only if there is a type in `dtypes` which is equal to this DataType.
4782        """
4783        self_is_nullable = self.args.get("nullable")
4784        for dtype in dtypes:
4785            other_type = DataType.build(dtype, copy=False, udt=True)
4786            other_is_nullable = other_type.args.get("nullable")
4787            if (
4788                other_type.expressions
4789                or (check_nullable and (self_is_nullable or other_is_nullable))
4790                or self.this == DataType.Type.USERDEFINED
4791                or other_type.this == DataType.Type.USERDEFINED
4792            ):
4793                matches = self == other_type
4794            else:
4795                matches = self.this == other_type.this
4796
4797            if matches:
4798                return True
4799        return False

Checks whether this DataType matches one of the provided data types. Nested types or precision will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this DataType to.
  • check_nullable: whether to take the NULLABLE type constructor into account for the comparison. If false, it means that NULLABLE is equivalent to INT.
Returns:

True, if and only if there is a type in dtypes which is equal to this DataType.

key = 'datatype'
class DataType.Type(sqlglot.helper.AutoName):
4503    class Type(AutoName):
4504        ARRAY = auto()
4505        AGGREGATEFUNCTION = auto()
4506        SIMPLEAGGREGATEFUNCTION = auto()
4507        BIGDECIMAL = auto()
4508        BIGINT = auto()
4509        BIGSERIAL = auto()
4510        BINARY = auto()
4511        BIT = auto()
4512        BLOB = auto()
4513        BOOLEAN = auto()
4514        BPCHAR = auto()
4515        CHAR = auto()
4516        DATE = auto()
4517        DATE32 = auto()
4518        DATEMULTIRANGE = auto()
4519        DATERANGE = auto()
4520        DATETIME = auto()
4521        DATETIME2 = auto()
4522        DATETIME64 = auto()
4523        DECIMAL = auto()
4524        DECIMAL32 = auto()
4525        DECIMAL64 = auto()
4526        DECIMAL128 = auto()
4527        DECIMAL256 = auto()
4528        DOUBLE = auto()
4529        DYNAMIC = auto()
4530        ENUM = auto()
4531        ENUM8 = auto()
4532        ENUM16 = auto()
4533        FIXEDSTRING = auto()
4534        FLOAT = auto()
4535        GEOGRAPHY = auto()
4536        GEOMETRY = auto()
4537        POINT = auto()
4538        RING = auto()
4539        LINESTRING = auto()
4540        MULTILINESTRING = auto()
4541        POLYGON = auto()
4542        MULTIPOLYGON = auto()
4543        HLLSKETCH = auto()
4544        HSTORE = auto()
4545        IMAGE = auto()
4546        INET = auto()
4547        INT = auto()
4548        INT128 = auto()
4549        INT256 = auto()
4550        INT4MULTIRANGE = auto()
4551        INT4RANGE = auto()
4552        INT8MULTIRANGE = auto()
4553        INT8RANGE = auto()
4554        INTERVAL = auto()
4555        IPADDRESS = auto()
4556        IPPREFIX = auto()
4557        IPV4 = auto()
4558        IPV6 = auto()
4559        JSON = auto()
4560        JSONB = auto()
4561        LIST = auto()
4562        LONGBLOB = auto()
4563        LONGTEXT = auto()
4564        LOWCARDINALITY = auto()
4565        MAP = auto()
4566        MEDIUMBLOB = auto()
4567        MEDIUMINT = auto()
4568        MEDIUMTEXT = auto()
4569        MONEY = auto()
4570        NAME = auto()
4571        NCHAR = auto()
4572        NESTED = auto()
4573        NOTHING = auto()
4574        NULL = auto()
4575        NUMMULTIRANGE = auto()
4576        NUMRANGE = auto()
4577        NVARCHAR = auto()
4578        OBJECT = auto()
4579        RANGE = auto()
4580        ROWVERSION = auto()
4581        SERIAL = auto()
4582        SET = auto()
4583        SMALLDATETIME = auto()
4584        SMALLINT = auto()
4585        SMALLMONEY = auto()
4586        SMALLSERIAL = auto()
4587        STRUCT = auto()
4588        SUPER = auto()
4589        TEXT = auto()
4590        TINYBLOB = auto()
4591        TINYTEXT = auto()
4592        TIME = auto()
4593        TIMETZ = auto()
4594        TIMESTAMP = auto()
4595        TIMESTAMPNTZ = auto()
4596        TIMESTAMPLTZ = auto()
4597        TIMESTAMPTZ = auto()
4598        TIMESTAMP_S = auto()
4599        TIMESTAMP_MS = auto()
4600        TIMESTAMP_NS = auto()
4601        TINYINT = auto()
4602        TSMULTIRANGE = auto()
4603        TSRANGE = auto()
4604        TSTZMULTIRANGE = auto()
4605        TSTZRANGE = auto()
4606        UBIGINT = auto()
4607        UINT = auto()
4608        UINT128 = auto()
4609        UINT256 = auto()
4610        UMEDIUMINT = auto()
4611        UDECIMAL = auto()
4612        UDOUBLE = auto()
4613        UNION = auto()
4614        UNKNOWN = auto()  # Sentinel value, useful for type annotation
4615        USERDEFINED = "USER-DEFINED"
4616        USMALLINT = auto()
4617        UTINYINT = auto()
4618        UUID = auto()
4619        VARBINARY = auto()
4620        VARCHAR = auto()
4621        VARIANT = auto()
4622        VECTOR = auto()
4623        XML = auto()
4624        YEAR = auto()
4625        TDIGEST = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
AGGREGATEFUNCTION = <Type.AGGREGATEFUNCTION: 'AGGREGATEFUNCTION'>
SIMPLEAGGREGATEFUNCTION = <Type.SIMPLEAGGREGATEFUNCTION: 'SIMPLEAGGREGATEFUNCTION'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BLOB = <Type.BLOB: 'BLOB'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
BPCHAR = <Type.BPCHAR: 'BPCHAR'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATE32 = <Type.DATE32: 'DATE32'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME2 = <Type.DATETIME2: 'DATETIME2'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DECIMAL32 = <Type.DECIMAL32: 'DECIMAL32'>
DECIMAL64 = <Type.DECIMAL64: 'DECIMAL64'>
DECIMAL128 = <Type.DECIMAL128: 'DECIMAL128'>
DECIMAL256 = <Type.DECIMAL256: 'DECIMAL256'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
DYNAMIC = <Type.DYNAMIC: 'DYNAMIC'>
ENUM = <Type.ENUM: 'ENUM'>
ENUM8 = <Type.ENUM8: 'ENUM8'>
ENUM16 = <Type.ENUM16: 'ENUM16'>
FIXEDSTRING = <Type.FIXEDSTRING: 'FIXEDSTRING'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
POINT = <Type.POINT: 'POINT'>
RING = <Type.RING: 'RING'>
LINESTRING = <Type.LINESTRING: 'LINESTRING'>
MULTILINESTRING = <Type.MULTILINESTRING: 'MULTILINESTRING'>
POLYGON = <Type.POLYGON: 'POLYGON'>
MULTIPOLYGON = <Type.MULTIPOLYGON: 'MULTIPOLYGON'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
IPADDRESS = <Type.IPADDRESS: 'IPADDRESS'>
IPPREFIX = <Type.IPPREFIX: 'IPPREFIX'>
IPV4 = <Type.IPV4: 'IPV4'>
IPV6 = <Type.IPV6: 'IPV6'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LIST = <Type.LIST: 'LIST'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
LOWCARDINALITY = <Type.LOWCARDINALITY: 'LOWCARDINALITY'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMINT = <Type.MEDIUMINT: 'MEDIUMINT'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NAME = <Type.NAME: 'NAME'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NESTED = <Type.NESTED: 'NESTED'>
NOTHING = <Type.NOTHING: 'NOTHING'>
NULL = <Type.NULL: 'NULL'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
RANGE = <Type.RANGE: 'RANGE'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SET = <Type.SET: 'SET'>
SMALLDATETIME = <Type.SMALLDATETIME: 'SMALLDATETIME'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TINYBLOB = <Type.TINYBLOB: 'TINYBLOB'>
TINYTEXT = <Type.TINYTEXT: 'TINYTEXT'>
TIME = <Type.TIME: 'TIME'>
TIMETZ = <Type.TIMETZ: 'TIMETZ'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPNTZ = <Type.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TIMESTAMP_S = <Type.TIMESTAMP_S: 'TIMESTAMP_S'>
TIMESTAMP_MS = <Type.TIMESTAMP_MS: 'TIMESTAMP_MS'>
TIMESTAMP_NS = <Type.TIMESTAMP_NS: 'TIMESTAMP_NS'>
TINYINT = <Type.TINYINT: 'TINYINT'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UMEDIUMINT = <Type.UMEDIUMINT: 'UMEDIUMINT'>
UDECIMAL = <Type.UDECIMAL: 'UDECIMAL'>
UDOUBLE = <Type.UDOUBLE: 'UDOUBLE'>
UNION = <Type.UNION: 'UNION'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
USERDEFINED = <Type.USERDEFINED: 'USER-DEFINED'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
VECTOR = <Type.VECTOR: 'VECTOR'>
XML = <Type.XML: 'XML'>
YEAR = <Type.YEAR: 'YEAR'>
TDIGEST = <Type.TDIGEST: 'TDIGEST'>
class PseudoType(DataType):
4803class PseudoType(DataType):
4804    arg_types = {"this": True}
arg_types = {'this': True}
key = 'pseudotype'
class ObjectIdentifier(DataType):
4808class ObjectIdentifier(DataType):
4809    arg_types = {"this": True}
arg_types = {'this': True}
key = 'objectidentifier'
class SubqueryPredicate(Predicate):
4813class SubqueryPredicate(Predicate):
4814    pass
key = 'subquerypredicate'
class All(SubqueryPredicate):
4817class All(SubqueryPredicate):
4818    pass
key = 'all'
class Any(SubqueryPredicate):
4821class Any(SubqueryPredicate):
4822    pass
key = 'any'
class Command(Expression):
4827class Command(Expression):
4828    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'command'
class Transaction(Expression):
4831class Transaction(Expression):
4832    arg_types = {"this": False, "modes": False, "mark": False}
arg_types = {'this': False, 'modes': False, 'mark': False}
key = 'transaction'
class Commit(Expression):
4835class Commit(Expression):
4836    arg_types = {"chain": False, "this": False, "durability": False}
arg_types = {'chain': False, 'this': False, 'durability': False}
key = 'commit'
class Rollback(Expression):
4839class Rollback(Expression):
4840    arg_types = {"savepoint": False, "this": False}
arg_types = {'savepoint': False, 'this': False}
key = 'rollback'
class Alter(Expression):
4843class Alter(Expression):
4844    arg_types = {
4845        "this": True,
4846        "kind": True,
4847        "actions": True,
4848        "exists": False,
4849        "only": False,
4850        "options": False,
4851        "cluster": False,
4852        "not_valid": False,
4853    }
4854
4855    @property
4856    def kind(self) -> t.Optional[str]:
4857        kind = self.args.get("kind")
4858        return kind and kind.upper()
4859
4860    @property
4861    def actions(self) -> t.List[Expression]:
4862        return self.args.get("actions") or []
arg_types = {'this': True, 'kind': True, 'actions': True, 'exists': False, 'only': False, 'options': False, 'cluster': False, 'not_valid': False}
kind: Optional[str]
4855    @property
4856    def kind(self) -> t.Optional[str]:
4857        kind = self.args.get("kind")
4858        return kind and kind.upper()
actions: List[Expression]
4860    @property
4861    def actions(self) -> t.List[Expression]:
4862        return self.args.get("actions") or []
key = 'alter'
class Analyze(Expression):
4865class Analyze(Expression):
4866    arg_types = {
4867        "kind": False,
4868        "this": False,
4869        "options": False,
4870        "mode": False,
4871        "partition": False,
4872        "expression": False,
4873        "properties": False,
4874    }
arg_types = {'kind': False, 'this': False, 'options': False, 'mode': False, 'partition': False, 'expression': False, 'properties': False}
key = 'analyze'
class AnalyzeStatistics(Expression):
4877class AnalyzeStatistics(Expression):
4878    arg_types = {
4879        "kind": True,
4880        "option": False,
4881        "this": False,
4882        "expressions": False,
4883    }
arg_types = {'kind': True, 'option': False, 'this': False, 'expressions': False}
key = 'analyzestatistics'
class AnalyzeHistogram(Expression):
4886class AnalyzeHistogram(Expression):
4887    arg_types = {
4888        "this": True,
4889        "expressions": True,
4890        "expression": False,
4891        "update_options": False,
4892    }
arg_types = {'this': True, 'expressions': True, 'expression': False, 'update_options': False}
key = 'analyzehistogram'
class AnalyzeSample(Expression):
4895class AnalyzeSample(Expression):
4896    arg_types = {"kind": True, "sample": True}
arg_types = {'kind': True, 'sample': True}
key = 'analyzesample'
class AnalyzeListChainedRows(Expression):
4899class AnalyzeListChainedRows(Expression):
4900    arg_types = {"expression": False}
arg_types = {'expression': False}
key = 'analyzelistchainedrows'
class AnalyzeDelete(Expression):
4903class AnalyzeDelete(Expression):
4904    arg_types = {"kind": False}
arg_types = {'kind': False}
key = 'analyzedelete'
class AnalyzeWith(Expression):
4907class AnalyzeWith(Expression):
4908    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'analyzewith'
class AnalyzeValidate(Expression):
4911class AnalyzeValidate(Expression):
4912    arg_types = {
4913        "kind": True,
4914        "this": False,
4915        "expression": False,
4916    }
arg_types = {'kind': True, 'this': False, 'expression': False}
key = 'analyzevalidate'
class AnalyzeColumns(Expression):
4919class AnalyzeColumns(Expression):
4920    pass
key = 'analyzecolumns'
class UsingData(Expression):
4923class UsingData(Expression):
4924    pass
key = 'usingdata'
class AddConstraint(Expression):
4927class AddConstraint(Expression):
4928    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'addconstraint'
class AddPartition(Expression):
4931class AddPartition(Expression):
4932    arg_types = {"this": True, "exists": False}
arg_types = {'this': True, 'exists': False}
key = 'addpartition'
class AttachOption(Expression):
4935class AttachOption(Expression):
4936    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'attachoption'
class DropPartition(Expression):
4939class DropPartition(Expression):
4940    arg_types = {"expressions": True, "exists": False}
arg_types = {'expressions': True, 'exists': False}
key = 'droppartition'
class ReplacePartition(Expression):
4944class ReplacePartition(Expression):
4945    arg_types = {"expression": True, "source": True}
arg_types = {'expression': True, 'source': True}
key = 'replacepartition'
class Binary(Condition):
4949class Binary(Condition):
4950    arg_types = {"this": True, "expression": True}
4951
4952    @property
4953    def left(self) -> Expression:
4954        return self.this
4955
4956    @property
4957    def right(self) -> Expression:
4958        return self.expression
arg_types = {'this': True, 'expression': True}
left: Expression
4952    @property
4953    def left(self) -> Expression:
4954        return self.this
right: Expression
4956    @property
4957    def right(self) -> Expression:
4958        return self.expression
key = 'binary'
class Add(Binary):
4961class Add(Binary):
4962    pass
key = 'add'
class Connector(Binary):
4965class Connector(Binary):
4966    pass
key = 'connector'
class BitwiseAnd(Binary):
4969class BitwiseAnd(Binary):
4970    pass
key = 'bitwiseand'
class BitwiseLeftShift(Binary):
4973class BitwiseLeftShift(Binary):
4974    pass
key = 'bitwiseleftshift'
class BitwiseOr(Binary):
4977class BitwiseOr(Binary):
4978    pass
key = 'bitwiseor'
class BitwiseRightShift(Binary):
4981class BitwiseRightShift(Binary):
4982    pass
key = 'bitwiserightshift'
class BitwiseXor(Binary):
4985class BitwiseXor(Binary):
4986    pass
key = 'bitwisexor'
class Div(Binary):
4989class Div(Binary):
4990    arg_types = {"this": True, "expression": True, "typed": False, "safe": False}
arg_types = {'this': True, 'expression': True, 'typed': False, 'safe': False}
key = 'div'
class Overlaps(Binary):
4993class Overlaps(Binary):
4994    pass
key = 'overlaps'
class Dot(Binary):
4997class Dot(Binary):
4998    @property
4999    def is_star(self) -> bool:
5000        return self.expression.is_star
5001
5002    @property
5003    def name(self) -> str:
5004        return self.expression.name
5005
5006    @property
5007    def output_name(self) -> str:
5008        return self.name
5009
5010    @classmethod
5011    def build(self, expressions: t.Sequence[Expression]) -> Dot:
5012        """Build a Dot object with a sequence of expressions."""
5013        if len(expressions) < 2:
5014            raise ValueError("Dot requires >= 2 expressions.")
5015
5016        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
5017
5018    @property
5019    def parts(self) -> t.List[Expression]:
5020        """Return the parts of a table / column in order catalog, db, table."""
5021        this, *parts = self.flatten()
5022
5023        parts.reverse()
5024
5025        for arg in COLUMN_PARTS:
5026            part = this.args.get(arg)
5027
5028            if isinstance(part, Expression):
5029                parts.append(part)
5030
5031        parts.reverse()
5032        return parts
is_star: bool
4998    @property
4999    def is_star(self) -> bool:
5000        return self.expression.is_star

Checks whether an expression is a star.

name: str
5002    @property
5003    def name(self) -> str:
5004        return self.expression.name
output_name: str
5006    @property
5007    def output_name(self) -> str:
5008        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
@classmethod
def build( self, expressions: Sequence[Expression]) -> Dot:
5010    @classmethod
5011    def build(self, expressions: t.Sequence[Expression]) -> Dot:
5012        """Build a Dot object with a sequence of expressions."""
5013        if len(expressions) < 2:
5014            raise ValueError("Dot requires >= 2 expressions.")
5015
5016        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))

Build a Dot object with a sequence of expressions.

parts: List[Expression]
5018    @property
5019    def parts(self) -> t.List[Expression]:
5020        """Return the parts of a table / column in order catalog, db, table."""
5021        this, *parts = self.flatten()
5022
5023        parts.reverse()
5024
5025        for arg in COLUMN_PARTS:
5026            part = this.args.get(arg)
5027
5028            if isinstance(part, Expression):
5029                parts.append(part)
5030
5031        parts.reverse()
5032        return parts

Return the parts of a table / column in order catalog, db, table.

key = 'dot'
DATA_TYPE = typing.Union[str, Identifier, Dot, DataType, DataType.Type]
class DPipe(Binary):
5038class DPipe(Binary):
5039    arg_types = {"this": True, "expression": True, "safe": False}
arg_types = {'this': True, 'expression': True, 'safe': False}
key = 'dpipe'
class EQ(Binary, Predicate):
5042class EQ(Binary, Predicate):
5043    pass
key = 'eq'
class NullSafeEQ(Binary, Predicate):
5046class NullSafeEQ(Binary, Predicate):
5047    pass
key = 'nullsafeeq'
class NullSafeNEQ(Binary, Predicate):
5050class NullSafeNEQ(Binary, Predicate):
5051    pass
key = 'nullsafeneq'
class PropertyEQ(Binary):
5055class PropertyEQ(Binary):
5056    pass
key = 'propertyeq'
class Distance(Binary):
5059class Distance(Binary):
5060    pass
key = 'distance'
class Escape(Binary):
5063class Escape(Binary):
5064    pass
key = 'escape'
class Glob(Binary, Predicate):
5067class Glob(Binary, Predicate):
5068    pass
key = 'glob'
class GT(Binary, Predicate):
5071class GT(Binary, Predicate):
5072    pass
key = 'gt'
class GTE(Binary, Predicate):
5075class GTE(Binary, Predicate):
5076    pass
key = 'gte'
class ILike(Binary, Predicate):
5079class ILike(Binary, Predicate):
5080    pass
key = 'ilike'
class ILikeAny(Binary, Predicate):
5083class ILikeAny(Binary, Predicate):
5084    pass
key = 'ilikeany'
class IntDiv(Binary):
5087class IntDiv(Binary):
5088    pass
key = 'intdiv'
class Is(Binary, Predicate):
5091class Is(Binary, Predicate):
5092    pass
key = 'is'
class Kwarg(Binary):
5095class Kwarg(Binary):
5096    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

key = 'kwarg'
class Like(Binary, Predicate):
5099class Like(Binary, Predicate):
5100    pass
key = 'like'
class LikeAny(Binary, Predicate):
5103class LikeAny(Binary, Predicate):
5104    pass
key = 'likeany'
class LT(Binary, Predicate):
5107class LT(Binary, Predicate):
5108    pass
key = 'lt'
class LTE(Binary, Predicate):
5111class LTE(Binary, Predicate):
5112    pass
key = 'lte'
class Mod(Binary):
5115class Mod(Binary):
5116    pass
key = 'mod'
class Mul(Binary):
5119class Mul(Binary):
5120    pass
key = 'mul'
class NEQ(Binary, Predicate):
5123class NEQ(Binary, Predicate):
5124    pass
key = 'neq'
class Operator(Binary):
5128class Operator(Binary):
5129    arg_types = {"this": True, "operator": True, "expression": True}
arg_types = {'this': True, 'operator': True, 'expression': True}
key = 'operator'
class SimilarTo(Binary, Predicate):
5132class SimilarTo(Binary, Predicate):
5133    pass
key = 'similarto'
class Slice(Binary):
5136class Slice(Binary):
5137    arg_types = {"this": False, "expression": False}
arg_types = {'this': False, 'expression': False}
key = 'slice'
class Sub(Binary):
5140class Sub(Binary):
5141    pass
key = 'sub'
class Unary(Condition):
5146class Unary(Condition):
5147    pass
key = 'unary'
class BitwiseNot(Unary):
5150class BitwiseNot(Unary):
5151    pass
key = 'bitwisenot'
class Not(Unary):
5154class Not(Unary):
5155    pass
key = 'not'
class Paren(Unary):
5158class Paren(Unary):
5159    @property
5160    def output_name(self) -> str:
5161        return self.this.name
output_name: str
5159    @property
5160    def output_name(self) -> str:
5161        return self.this.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'paren'
class Neg(Unary):
5164class Neg(Unary):
5165    def to_py(self) -> int | Decimal:
5166        if self.is_number:
5167            return self.this.to_py() * -1
5168        return super().to_py()
def to_py(self) -> int | decimal.Decimal:
5165    def to_py(self) -> int | Decimal:
5166        if self.is_number:
5167            return self.this.to_py() * -1
5168        return super().to_py()

Returns a Python object equivalent of the SQL node.

key = 'neg'
class Alias(Expression):
5171class Alias(Expression):
5172    arg_types = {"this": True, "alias": False}
5173
5174    @property
5175    def output_name(self) -> str:
5176        return self.alias
arg_types = {'this': True, 'alias': False}
output_name: str
5174    @property
5175    def output_name(self) -> str:
5176        return self.alias

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'alias'
class PivotAlias(Alias):
5181class PivotAlias(Alias):
5182    pass
key = 'pivotalias'
class PivotAny(Expression):
5187class PivotAny(Expression):
5188    arg_types = {"this": False}
arg_types = {'this': False}
key = 'pivotany'
class Aliases(Expression):
5191class Aliases(Expression):
5192    arg_types = {"this": True, "expressions": True}
5193
5194    @property
5195    def aliases(self):
5196        return self.expressions
arg_types = {'this': True, 'expressions': True}
aliases
5194    @property
5195    def aliases(self):
5196        return self.expressions
key = 'aliases'
class AtIndex(Expression):
5200class AtIndex(Expression):
5201    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'atindex'
class AtTimeZone(Expression):
5204class AtTimeZone(Expression):
5205    arg_types = {"this": True, "zone": True}
arg_types = {'this': True, 'zone': True}
key = 'attimezone'
class FromTimeZone(Expression):
5208class FromTimeZone(Expression):
5209    arg_types = {"this": True, "zone": True}
arg_types = {'this': True, 'zone': True}
key = 'fromtimezone'
class Between(Predicate):
5212class Between(Predicate):
5213    arg_types = {"this": True, "low": True, "high": True}
arg_types = {'this': True, 'low': True, 'high': True}
key = 'between'
class Bracket(Condition):
5216class Bracket(Condition):
5217    # https://cloud.google.com/bigquery/docs/reference/standard-sql/operators#array_subscript_operator
5218    arg_types = {
5219        "this": True,
5220        "expressions": True,
5221        "offset": False,
5222        "safe": False,
5223        "returns_list_for_maps": False,
5224    }
5225
5226    @property
5227    def output_name(self) -> str:
5228        if len(self.expressions) == 1:
5229            return self.expressions[0].output_name
5230
5231        return super().output_name
arg_types = {'this': True, 'expressions': True, 'offset': False, 'safe': False, 'returns_list_for_maps': False}
output_name: str
5226    @property
5227    def output_name(self) -> str:
5228        if len(self.expressions) == 1:
5229            return self.expressions[0].output_name
5230
5231        return super().output_name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'bracket'
class Distinct(Expression):
5234class Distinct(Expression):
5235    arg_types = {"expressions": False, "on": False}
arg_types = {'expressions': False, 'on': False}
key = 'distinct'
class In(Predicate):
5238class In(Predicate):
5239    arg_types = {
5240        "this": True,
5241        "expressions": False,
5242        "query": False,
5243        "unnest": False,
5244        "field": False,
5245        "is_global": False,
5246    }
arg_types = {'this': True, 'expressions': False, 'query': False, 'unnest': False, 'field': False, 'is_global': False}
key = 'in'
class ForIn(Expression):
5250class ForIn(Expression):
5251    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'forin'
class TimeUnit(Expression):
5254class TimeUnit(Expression):
5255    """Automatically converts unit arg into a var."""
5256
5257    arg_types = {"unit": False}
5258
5259    UNABBREVIATED_UNIT_NAME = {
5260        "D": "DAY",
5261        "H": "HOUR",
5262        "M": "MINUTE",
5263        "MS": "MILLISECOND",
5264        "NS": "NANOSECOND",
5265        "Q": "QUARTER",
5266        "S": "SECOND",
5267        "US": "MICROSECOND",
5268        "W": "WEEK",
5269        "Y": "YEAR",
5270    }
5271
5272    VAR_LIKE = (Column, Literal, Var)
5273
5274    def __init__(self, **args):
5275        unit = args.get("unit")
5276        if isinstance(unit, self.VAR_LIKE):
5277            args["unit"] = Var(
5278                this=(self.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5279            )
5280        elif isinstance(unit, Week):
5281            unit.set("this", Var(this=unit.this.name.upper()))
5282
5283        super().__init__(**args)
5284
5285    @property
5286    def unit(self) -> t.Optional[Var | IntervalSpan]:
5287        return self.args.get("unit")

Automatically converts unit arg into a var.

TimeUnit(**args)
5274    def __init__(self, **args):
5275        unit = args.get("unit")
5276        if isinstance(unit, self.VAR_LIKE):
5277            args["unit"] = Var(
5278                this=(self.UNABBREVIATED_UNIT_NAME.get(unit.name) or unit.name).upper()
5279            )
5280        elif isinstance(unit, Week):
5281            unit.set("this", Var(this=unit.this.name.upper()))
5282
5283        super().__init__(**args)
arg_types = {'unit': False}
UNABBREVIATED_UNIT_NAME = {'D': 'DAY', 'H': 'HOUR', 'M': 'MINUTE', 'MS': 'MILLISECOND', 'NS': 'NANOSECOND', 'Q': 'QUARTER', 'S': 'SECOND', 'US': 'MICROSECOND', 'W': 'WEEK', 'Y': 'YEAR'}
VAR_LIKE = (<class 'Column'>, <class 'Literal'>, <class 'Var'>)
unit: Union[Var, IntervalSpan, NoneType]
5285    @property
5286    def unit(self) -> t.Optional[Var | IntervalSpan]:
5287        return self.args.get("unit")
key = 'timeunit'
class IntervalOp(TimeUnit):
5290class IntervalOp(TimeUnit):
5291    arg_types = {"unit": False, "expression": True}
5292
5293    def interval(self):
5294        return Interval(
5295            this=self.expression.copy(),
5296            unit=self.unit.copy() if self.unit else None,
5297        )
arg_types = {'unit': False, 'expression': True}
def interval(self):
5293    def interval(self):
5294        return Interval(
5295            this=self.expression.copy(),
5296            unit=self.unit.copy() if self.unit else None,
5297        )
key = 'intervalop'
class IntervalSpan(DataType):
5303class IntervalSpan(DataType):
5304    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'intervalspan'
class Interval(TimeUnit):
5307class Interval(TimeUnit):
5308    arg_types = {"this": False, "unit": False}
arg_types = {'this': False, 'unit': False}
key = 'interval'
class IgnoreNulls(Expression):
5311class IgnoreNulls(Expression):
5312    pass
key = 'ignorenulls'
class RespectNulls(Expression):
5315class RespectNulls(Expression):
5316    pass
key = 'respectnulls'
class HavingMax(Expression):
5320class HavingMax(Expression):
5321    arg_types = {"this": True, "expression": True, "max": True}
arg_types = {'this': True, 'expression': True, 'max': True}
key = 'havingmax'
class Func(Condition):
5325class Func(Condition):
5326    """
5327    The base class for all function expressions.
5328
5329    Attributes:
5330        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
5331            treated as a variable length argument and the argument's value will be stored as a list.
5332        _sql_names (list): the SQL name (1st item in the list) and aliases (subsequent items) for this
5333            function expression. These values are used to map this node to a name during parsing as
5334            well as to provide the function's name during SQL string generation. By default the SQL
5335            name is set to the expression's class name transformed to snake case.
5336    """
5337
5338    is_var_len_args = False
5339
5340    @classmethod
5341    def from_arg_list(cls, args):
5342        if cls.is_var_len_args:
5343            all_arg_keys = list(cls.arg_types)
5344            # If this function supports variable length argument treat the last argument as such.
5345            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
5346            num_non_var = len(non_var_len_arg_keys)
5347
5348            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
5349            args_dict[all_arg_keys[-1]] = args[num_non_var:]
5350        else:
5351            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
5352
5353        return cls(**args_dict)
5354
5355    @classmethod
5356    def sql_names(cls):
5357        if cls is Func:
5358            raise NotImplementedError(
5359                "SQL name is only supported by concrete function implementations"
5360            )
5361        if "_sql_names" not in cls.__dict__:
5362            cls._sql_names = [camel_to_snake_case(cls.__name__)]
5363        return cls._sql_names
5364
5365    @classmethod
5366    def sql_name(cls):
5367        return cls.sql_names()[0]
5368
5369    @classmethod
5370    def default_parser_mappings(cls):
5371        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
is_var_len_args = False
@classmethod
def from_arg_list(cls, args):
5340    @classmethod
5341    def from_arg_list(cls, args):
5342        if cls.is_var_len_args:
5343            all_arg_keys = list(cls.arg_types)
5344            # If this function supports variable length argument treat the last argument as such.
5345            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
5346            num_non_var = len(non_var_len_arg_keys)
5347
5348            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
5349            args_dict[all_arg_keys[-1]] = args[num_non_var:]
5350        else:
5351            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
5352
5353        return cls(**args_dict)
@classmethod
def sql_names(cls):
5355    @classmethod
5356    def sql_names(cls):
5357        if cls is Func:
5358            raise NotImplementedError(
5359                "SQL name is only supported by concrete function implementations"
5360            )
5361        if "_sql_names" not in cls.__dict__:
5362            cls._sql_names = [camel_to_snake_case(cls.__name__)]
5363        return cls._sql_names
@classmethod
def sql_name(cls):
5365    @classmethod
5366    def sql_name(cls):
5367        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
5369    @classmethod
5370    def default_parser_mappings(cls):
5371        return {name: cls.from_arg_list for name in cls.sql_names()}
key = 'func'
class AggFunc(Func):
5374class AggFunc(Func):
5375    pass
key = 'aggfunc'
class ArrayRemove(Func):
5378class ArrayRemove(Func):
5379    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayremove'
class ParameterizedAgg(AggFunc):
5382class ParameterizedAgg(AggFunc):
5383    arg_types = {"this": True, "expressions": True, "params": True}
arg_types = {'this': True, 'expressions': True, 'params': True}
key = 'parameterizedagg'
class Abs(Func):
5386class Abs(Func):
5387    pass
key = 'abs'
class ArgMax(AggFunc):
5390class ArgMax(AggFunc):
5391    arg_types = {"this": True, "expression": True, "count": False}
5392    _sql_names = ["ARG_MAX", "ARGMAX", "MAX_BY"]
arg_types = {'this': True, 'expression': True, 'count': False}
key = 'argmax'
class ArgMin(AggFunc):
5395class ArgMin(AggFunc):
5396    arg_types = {"this": True, "expression": True, "count": False}
5397    _sql_names = ["ARG_MIN", "ARGMIN", "MIN_BY"]
arg_types = {'this': True, 'expression': True, 'count': False}
key = 'argmin'
class ApproxTopK(AggFunc):
5400class ApproxTopK(AggFunc):
5401    arg_types = {"this": True, "expression": False, "counters": False}
arg_types = {'this': True, 'expression': False, 'counters': False}
key = 'approxtopk'
class Flatten(Func):
5404class Flatten(Func):
5405    pass
key = 'flatten'
class Transform(Func):
5409class Transform(Func):
5410    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'transform'
class Anonymous(Func):
5413class Anonymous(Func):
5414    arg_types = {"this": True, "expressions": False}
5415    is_var_len_args = True
5416
5417    @property
5418    def name(self) -> str:
5419        return self.this if isinstance(self.this, str) else self.this.name
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
name: str
5417    @property
5418    def name(self) -> str:
5419        return self.this if isinstance(self.this, str) else self.this.name
key = 'anonymous'
class AnonymousAggFunc(AggFunc):
5422class AnonymousAggFunc(AggFunc):
5423    arg_types = {"this": True, "expressions": False}
5424    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'anonymousaggfunc'
class CombinedAggFunc(AnonymousAggFunc):
5428class CombinedAggFunc(AnonymousAggFunc):
5429    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'combinedaggfunc'
class CombinedParameterizedAgg(ParameterizedAgg):
5432class CombinedParameterizedAgg(ParameterizedAgg):
5433    arg_types = {"this": True, "expressions": True, "params": True}
arg_types = {'this': True, 'expressions': True, 'params': True}
key = 'combinedparameterizedagg'
class Hll(AggFunc):
5438class Hll(AggFunc):
5439    arg_types = {"this": True, "expressions": False}
5440    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'hll'
class ApproxDistinct(AggFunc):
5443class ApproxDistinct(AggFunc):
5444    arg_types = {"this": True, "accuracy": False}
5445    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
arg_types = {'this': True, 'accuracy': False}
key = 'approxdistinct'
class Apply(Func):
5448class Apply(Func):
5449    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'apply'
class Array(Func):
5452class Array(Func):
5453    arg_types = {"expressions": False, "bracket_notation": False}
5454    is_var_len_args = True
arg_types = {'expressions': False, 'bracket_notation': False}
is_var_len_args = True
key = 'array'
class ToArray(Func):
5458class ToArray(Func):
5459    pass
key = 'toarray'
class List(Func):
5463class List(Func):
5464    arg_types = {"expressions": False}
5465    is_var_len_args = True
arg_types = {'expressions': False}
is_var_len_args = True
key = 'list'
class Pad(Func):
5469class Pad(Func):
5470    arg_types = {"this": True, "expression": True, "fill_pattern": False, "is_left": True}
arg_types = {'this': True, 'expression': True, 'fill_pattern': False, 'is_left': True}
key = 'pad'
class ToChar(Func):
5475class ToChar(Func):
5476    arg_types = {"this": True, "format": False, "nlsparam": False}
arg_types = {'this': True, 'format': False, 'nlsparam': False}
key = 'tochar'
class ToNumber(Func):
5481class ToNumber(Func):
5482    arg_types = {
5483        "this": True,
5484        "format": False,
5485        "nlsparam": False,
5486        "precision": False,
5487        "scale": False,
5488    }
arg_types = {'this': True, 'format': False, 'nlsparam': False, 'precision': False, 'scale': False}
key = 'tonumber'
class ToDouble(Func):
5492class ToDouble(Func):
5493    arg_types = {
5494        "this": True,
5495        "format": False,
5496    }
arg_types = {'this': True, 'format': False}
key = 'todouble'
class Columns(Func):
5499class Columns(Func):
5500    arg_types = {"this": True, "unpack": False}
arg_types = {'this': True, 'unpack': False}
key = 'columns'
class Convert(Func):
5504class Convert(Func):
5505    arg_types = {"this": True, "expression": True, "style": False}
arg_types = {'this': True, 'expression': True, 'style': False}
key = 'convert'
class ConvertToCharset(Func):
5509class ConvertToCharset(Func):
5510    arg_types = {"this": True, "dest": True, "source": False}
arg_types = {'this': True, 'dest': True, 'source': False}
key = 'converttocharset'
class ConvertTimezone(Func):
5513class ConvertTimezone(Func):
5514    arg_types = {"source_tz": False, "target_tz": True, "timestamp": True}
arg_types = {'source_tz': False, 'target_tz': True, 'timestamp': True}
key = 'converttimezone'
class GenerateSeries(Func):
5517class GenerateSeries(Func):
5518    arg_types = {"start": True, "end": True, "step": False, "is_end_exclusive": False}
arg_types = {'start': True, 'end': True, 'step': False, 'is_end_exclusive': False}
key = 'generateseries'
class ExplodingGenerateSeries(GenerateSeries):
5524class ExplodingGenerateSeries(GenerateSeries):
5525    pass
key = 'explodinggenerateseries'
class ArrayAgg(AggFunc):
5528class ArrayAgg(AggFunc):
5529    arg_types = {"this": True, "nulls_excluded": False}
arg_types = {'this': True, 'nulls_excluded': False}
key = 'arrayagg'
class ArrayUniqueAgg(AggFunc):
5532class ArrayUniqueAgg(AggFunc):
5533    pass
key = 'arrayuniqueagg'
class ArrayAll(Func):
5536class ArrayAll(Func):
5537    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayall'
class ArrayAny(Func):
5541class ArrayAny(Func):
5542    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayany'
class ArrayConcat(Func):
5545class ArrayConcat(Func):
5546    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
5547    arg_types = {"this": True, "expressions": False}
5548    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'arrayconcat'
class ArrayConcatAgg(AggFunc):
5551class ArrayConcatAgg(AggFunc):
5552    pass
key = 'arrayconcatagg'
class ArrayConstructCompact(Func):
5555class ArrayConstructCompact(Func):
5556    arg_types = {"expressions": True}
5557    is_var_len_args = True
arg_types = {'expressions': True}
is_var_len_args = True
key = 'arrayconstructcompact'
class ArrayContains(Binary, Func):
5560class ArrayContains(Binary, Func):
5561    _sql_names = ["ARRAY_CONTAINS", "ARRAY_HAS"]
key = 'arraycontains'
class ArrayContainsAll(Binary, Func):
5564class ArrayContainsAll(Binary, Func):
5565    _sql_names = ["ARRAY_CONTAINS_ALL", "ARRAY_HAS_ALL"]
key = 'arraycontainsall'
class ArrayFilter(Func):
5568class ArrayFilter(Func):
5569    arg_types = {"this": True, "expression": True}
5570    _sql_names = ["FILTER", "ARRAY_FILTER"]
arg_types = {'this': True, 'expression': True}
key = 'arrayfilter'
class ArrayToString(Func):
5573class ArrayToString(Func):
5574    arg_types = {"this": True, "expression": True, "null": False}
5575    _sql_names = ["ARRAY_TO_STRING", "ARRAY_JOIN"]
arg_types = {'this': True, 'expression': True, 'null': False}
key = 'arraytostring'
class ArrayIntersect(Func):
5578class ArrayIntersect(Func):
5579    arg_types = {"expressions": True}
5580    is_var_len_args = True
5581    _sql_names = ["ARRAY_INTERSECT", "ARRAY_INTERSECTION"]
arg_types = {'expressions': True}
is_var_len_args = True
key = 'arrayintersect'
class StPoint(Func):
5584class StPoint(Func):
5585    arg_types = {"this": True, "expression": True, "null": False}
5586    _sql_names = ["ST_POINT", "ST_MAKEPOINT"]
arg_types = {'this': True, 'expression': True, 'null': False}
key = 'stpoint'
class StDistance(Func):
5589class StDistance(Func):
5590    arg_types = {"this": True, "expression": True, "use_spheroid": False}
arg_types = {'this': True, 'expression': True, 'use_spheroid': False}
key = 'stdistance'
class String(Func):
5594class String(Func):
5595    arg_types = {"this": True, "zone": False}
arg_types = {'this': True, 'zone': False}
key = 'string'
class StringToArray(Func):
5598class StringToArray(Func):
5599    arg_types = {"this": True, "expression": False, "null": False}
5600    _sql_names = ["STRING_TO_ARRAY", "SPLIT_BY_STRING", "STRTOK_TO_ARRAY"]
arg_types = {'this': True, 'expression': False, 'null': False}
key = 'stringtoarray'
class ArrayOverlaps(Binary, Func):
5603class ArrayOverlaps(Binary, Func):
5604    pass
key = 'arrayoverlaps'
class ArraySize(Func):
5607class ArraySize(Func):
5608    arg_types = {"this": True, "expression": False}
5609    _sql_names = ["ARRAY_SIZE", "ARRAY_LENGTH"]
arg_types = {'this': True, 'expression': False}
key = 'arraysize'
class ArraySort(Func):
5612class ArraySort(Func):
5613    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysort'
class ArraySum(Func):
5616class ArraySum(Func):
5617    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysum'
class ArrayUnionAgg(AggFunc):
5620class ArrayUnionAgg(AggFunc):
5621    pass
key = 'arrayunionagg'
class Avg(AggFunc):
5624class Avg(AggFunc):
5625    pass
key = 'avg'
class AnyValue(AggFunc):
5628class AnyValue(AggFunc):
5629    pass
key = 'anyvalue'
class Lag(AggFunc):
5632class Lag(AggFunc):
5633    arg_types = {"this": True, "offset": False, "default": False}
arg_types = {'this': True, 'offset': False, 'default': False}
key = 'lag'
class Lead(AggFunc):
5636class Lead(AggFunc):
5637    arg_types = {"this": True, "offset": False, "default": False}
arg_types = {'this': True, 'offset': False, 'default': False}
key = 'lead'
class First(AggFunc):
5642class First(AggFunc):
5643    pass
key = 'first'
class Last(AggFunc):
5646class Last(AggFunc):
5647    pass
key = 'last'
class FirstValue(AggFunc):
5650class FirstValue(AggFunc):
5651    pass
key = 'firstvalue'
class LastValue(AggFunc):
5654class LastValue(AggFunc):
5655    pass
key = 'lastvalue'
class NthValue(AggFunc):
5658class NthValue(AggFunc):
5659    arg_types = {"this": True, "offset": True}
arg_types = {'this': True, 'offset': True}
key = 'nthvalue'
class Case(Func):
5662class Case(Func):
5663    arg_types = {"this": False, "ifs": True, "default": False}
5664
5665    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
5666        instance = maybe_copy(self, copy)
5667        instance.append(
5668            "ifs",
5669            If(
5670                this=maybe_parse(condition, copy=copy, **opts),
5671                true=maybe_parse(then, copy=copy, **opts),
5672            ),
5673        )
5674        return instance
5675
5676    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
5677        instance = maybe_copy(self, copy)
5678        instance.set("default", maybe_parse(condition, copy=copy, **opts))
5679        return instance
arg_types = {'this': False, 'ifs': True, 'default': False}
def when( self, condition: Union[str, Expression], then: Union[str, Expression], copy: bool = True, **opts) -> Case:
5665    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
5666        instance = maybe_copy(self, copy)
5667        instance.append(
5668            "ifs",
5669            If(
5670                this=maybe_parse(condition, copy=copy, **opts),
5671                true=maybe_parse(then, copy=copy, **opts),
5672            ),
5673        )
5674        return instance
def else_( self, condition: Union[str, Expression], copy: bool = True, **opts) -> Case:
5676    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
5677        instance = maybe_copy(self, copy)
5678        instance.set("default", maybe_parse(condition, copy=copy, **opts))
5679        return instance
key = 'case'
class Cast(Func):
5682class Cast(Func):
5683    arg_types = {
5684        "this": True,
5685        "to": True,
5686        "format": False,
5687        "safe": False,
5688        "action": False,
5689        "default": False,
5690    }
5691
5692    @property
5693    def name(self) -> str:
5694        return self.this.name
5695
5696    @property
5697    def to(self) -> DataType:
5698        return self.args["to"]
5699
5700    @property
5701    def output_name(self) -> str:
5702        return self.name
5703
5704    def is_type(self, *dtypes: DATA_TYPE) -> bool:
5705        """
5706        Checks whether this Cast's DataType matches one of the provided data types. Nested types
5707        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
5708        array<int> != array<float>.
5709
5710        Args:
5711            dtypes: the data types to compare this Cast's DataType to.
5712
5713        Returns:
5714            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
5715        """
5716        return self.to.is_type(*dtypes)
arg_types = {'this': True, 'to': True, 'format': False, 'safe': False, 'action': False, 'default': False}
name: str
5692    @property
5693    def name(self) -> str:
5694        return self.this.name
to: DataType
5696    @property
5697    def to(self) -> DataType:
5698        return self.args["to"]
output_name: str
5700    @property
5701    def output_name(self) -> str:
5702        return self.name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
def is_type( self, *dtypes: Union[str, Identifier, Dot, DataType, DataType.Type]) -> bool:
5704    def is_type(self, *dtypes: DATA_TYPE) -> bool:
5705        """
5706        Checks whether this Cast's DataType matches one of the provided data types. Nested types
5707        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
5708        array<int> != array<float>.
5709
5710        Args:
5711            dtypes: the data types to compare this Cast's DataType to.
5712
5713        Returns:
5714            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
5715        """
5716        return self.to.is_type(*dtypes)

Checks whether this Cast's DataType matches one of the provided data types. Nested types like arrays or structs will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this Cast's DataType to.
Returns:

True, if and only if there is a type in dtypes which is equal to this Cast's DataType.

key = 'cast'
class TryCast(Cast):
5719class TryCast(Cast):
5720    pass
key = 'trycast'
class JSONCast(Cast):
5724class JSONCast(Cast):
5725    pass
key = 'jsoncast'
class Try(Func):
5728class Try(Func):
5729    pass
key = 'try'
class CastToStrType(Func):
5732class CastToStrType(Func):
5733    arg_types = {"this": True, "to": True}
arg_types = {'this': True, 'to': True}
key = 'casttostrtype'
class TranslateCharacters(Expression):
5737class TranslateCharacters(Expression):
5738    arg_types = {"this": True, "expression": True, "with_error": False}
arg_types = {'this': True, 'expression': True, 'with_error': False}
key = 'translatecharacters'
class Collate(Binary, Func):
5741class Collate(Binary, Func):
5742    pass
key = 'collate'
class Ceil(Func):
5745class Ceil(Func):
5746    arg_types = {"this": True, "decimals": False, "to": False}
5747    _sql_names = ["CEIL", "CEILING"]
arg_types = {'this': True, 'decimals': False, 'to': False}
key = 'ceil'
class Coalesce(Func):
5750class Coalesce(Func):
5751    arg_types = {"this": True, "expressions": False, "is_nvl": False, "is_null": False}
5752    is_var_len_args = True
5753    _sql_names = ["COALESCE", "IFNULL", "NVL"]
arg_types = {'this': True, 'expressions': False, 'is_nvl': False, 'is_null': False}
is_var_len_args = True
key = 'coalesce'
class Chr(Func):
5756class Chr(Func):
5757    arg_types = {"expressions": True, "charset": False}
5758    is_var_len_args = True
5759    _sql_names = ["CHR", "CHAR"]
arg_types = {'expressions': True, 'charset': False}
is_var_len_args = True
key = 'chr'
class Concat(Func):
5762class Concat(Func):
5763    arg_types = {"expressions": True, "safe": False, "coalesce": False}
5764    is_var_len_args = True
arg_types = {'expressions': True, 'safe': False, 'coalesce': False}
is_var_len_args = True
key = 'concat'
class ConcatWs(Concat):
5767class ConcatWs(Concat):
5768    _sql_names = ["CONCAT_WS"]
key = 'concatws'
class Contains(Func):
5771class Contains(Func):
5772    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'contains'
class ConnectByRoot(Func):
5776class ConnectByRoot(Func):
5777    pass
key = 'connectbyroot'
class Count(AggFunc):
5780class Count(AggFunc):
5781    arg_types = {"this": False, "expressions": False, "big_int": False}
5782    is_var_len_args = True
arg_types = {'this': False, 'expressions': False, 'big_int': False}
is_var_len_args = True
key = 'count'
class CountIf(AggFunc):
5785class CountIf(AggFunc):
5786    _sql_names = ["COUNT_IF", "COUNTIF"]
key = 'countif'
class Cbrt(Func):
5790class Cbrt(Func):
5791    pass
key = 'cbrt'
class CurrentDate(Func):
5794class CurrentDate(Func):
5795    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdate'
class CurrentDatetime(Func):
5798class CurrentDatetime(Func):
5799    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdatetime'
class CurrentTime(Func):
5802class CurrentTime(Func):
5803    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currenttime'
class CurrentTimestamp(Func):
5806class CurrentTimestamp(Func):
5807    arg_types = {"this": False, "sysdate": False}
arg_types = {'this': False, 'sysdate': False}
key = 'currenttimestamp'
class CurrentTimestampLTZ(Func):
5810class CurrentTimestampLTZ(Func):
5811    arg_types = {}
arg_types = {}
key = 'currenttimestampltz'
class CurrentSchema(Func):
5814class CurrentSchema(Func):
5815    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentschema'
class CurrentUser(Func):
5818class CurrentUser(Func):
5819    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentuser'
class DateAdd(Func, IntervalOp):
5822class DateAdd(Func, IntervalOp):
5823    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'dateadd'
class DateBin(Func, IntervalOp):
5826class DateBin(Func, IntervalOp):
5827    arg_types = {"this": True, "expression": True, "unit": False, "zone": False}
arg_types = {'this': True, 'expression': True, 'unit': False, 'zone': False}
key = 'datebin'
class DateSub(Func, IntervalOp):
5830class DateSub(Func, IntervalOp):
5831    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datesub'
class DateDiff(Func, TimeUnit):
5834class DateDiff(Func, TimeUnit):
5835    _sql_names = ["DATEDIFF", "DATE_DIFF"]
5836    arg_types = {"this": True, "expression": True, "unit": False, "zone": False}
arg_types = {'this': True, 'expression': True, 'unit': False, 'zone': False}
key = 'datediff'
class DateTrunc(Func):
5839class DateTrunc(Func):
5840    arg_types = {"unit": True, "this": True, "zone": False}
5841
5842    def __init__(self, **args):
5843        # Across most dialects it's safe to unabbreviate the unit (e.g. 'Q' -> 'QUARTER') except Oracle
5844        # https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/ROUND-and-TRUNC-Date-Functions.html
5845        unabbreviate = args.pop("unabbreviate", True)
5846
5847        unit = args.get("unit")
5848        if isinstance(unit, TimeUnit.VAR_LIKE):
5849            unit_name = unit.name.upper()
5850            if unabbreviate and unit_name in TimeUnit.UNABBREVIATED_UNIT_NAME:
5851                unit_name = TimeUnit.UNABBREVIATED_UNIT_NAME[unit_name]
5852
5853            args["unit"] = Literal.string(unit_name)
5854
5855        super().__init__(**args)
5856
5857    @property
5858    def unit(self) -> Expression:
5859        return self.args["unit"]
DateTrunc(**args)
5842    def __init__(self, **args):
5843        # Across most dialects it's safe to unabbreviate the unit (e.g. 'Q' -> 'QUARTER') except Oracle
5844        # https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/ROUND-and-TRUNC-Date-Functions.html
5845        unabbreviate = args.pop("unabbreviate", True)
5846
5847        unit = args.get("unit")
5848        if isinstance(unit, TimeUnit.VAR_LIKE):
5849            unit_name = unit.name.upper()
5850            if unabbreviate and unit_name in TimeUnit.UNABBREVIATED_UNIT_NAME:
5851                unit_name = TimeUnit.UNABBREVIATED_UNIT_NAME[unit_name]
5852
5853            args["unit"] = Literal.string(unit_name)
5854
5855        super().__init__(**args)
arg_types = {'unit': True, 'this': True, 'zone': False}
unit: Expression
5857    @property
5858    def unit(self) -> Expression:
5859        return self.args["unit"]
key = 'datetrunc'
class Datetime(Func):
5864class Datetime(Func):
5865    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'datetime'
class DatetimeAdd(Func, IntervalOp):
5868class DatetimeAdd(Func, IntervalOp):
5869    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimeadd'
class DatetimeSub(Func, IntervalOp):
5872class DatetimeSub(Func, IntervalOp):
5873    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimesub'
class DatetimeDiff(Func, TimeUnit):
5876class DatetimeDiff(Func, TimeUnit):
5877    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimediff'
class DatetimeTrunc(Func, TimeUnit):
5880class DatetimeTrunc(Func, TimeUnit):
5881    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'datetimetrunc'
class DayOfWeek(Func):
5884class DayOfWeek(Func):
5885    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
key = 'dayofweek'
class DayOfWeekIso(Func):
5890class DayOfWeekIso(Func):
5891    _sql_names = ["DAYOFWEEK_ISO", "ISODOW"]
key = 'dayofweekiso'
class DayOfMonth(Func):
5894class DayOfMonth(Func):
5895    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
key = 'dayofmonth'
class DayOfYear(Func):
5898class DayOfYear(Func):
5899    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
key = 'dayofyear'
class ToDays(Func):
5902class ToDays(Func):
5903    pass
key = 'todays'
class WeekOfYear(Func):
5906class WeekOfYear(Func):
5907    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
key = 'weekofyear'
class MonthsBetween(Func):
5910class MonthsBetween(Func):
5911    arg_types = {"this": True, "expression": True, "roundoff": False}
arg_types = {'this': True, 'expression': True, 'roundoff': False}
key = 'monthsbetween'
class MakeInterval(Func):
5914class MakeInterval(Func):
5915    arg_types = {
5916        "year": False,
5917        "month": False,
5918        "day": False,
5919        "hour": False,
5920        "minute": False,
5921        "second": False,
5922    }
arg_types = {'year': False, 'month': False, 'day': False, 'hour': False, 'minute': False, 'second': False}
key = 'makeinterval'
class LastDay(Func, TimeUnit):
5925class LastDay(Func, TimeUnit):
5926    _sql_names = ["LAST_DAY", "LAST_DAY_OF_MONTH"]
5927    arg_types = {"this": True, "unit": False}
arg_types = {'this': True, 'unit': False}
key = 'lastday'
class Extract(Func):
5930class Extract(Func):
5931    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'extract'
class Exists(Func, SubqueryPredicate):
5934class Exists(Func, SubqueryPredicate):
5935    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'exists'
class Timestamp(Func):
5938class Timestamp(Func):
5939    arg_types = {"this": False, "zone": False, "with_tz": False}
arg_types = {'this': False, 'zone': False, 'with_tz': False}
key = 'timestamp'
class TimestampAdd(Func, TimeUnit):
5942class TimestampAdd(Func, TimeUnit):
5943    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampadd'
class TimestampSub(Func, TimeUnit):
5946class TimestampSub(Func, TimeUnit):
5947    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampsub'
class TimestampDiff(Func, TimeUnit):
5950class TimestampDiff(Func, TimeUnit):
5951    _sql_names = ["TIMESTAMPDIFF", "TIMESTAMP_DIFF"]
5952    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampdiff'
class TimestampTrunc(Func, TimeUnit):
5955class TimestampTrunc(Func, TimeUnit):
5956    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timestamptrunc'
class TimeAdd(Func, TimeUnit):
5959class TimeAdd(Func, TimeUnit):
5960    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timeadd'
class TimeSub(Func, TimeUnit):
5963class TimeSub(Func, TimeUnit):
5964    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timesub'
class TimeDiff(Func, TimeUnit):
5967class TimeDiff(Func, TimeUnit):
5968    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timediff'
class TimeTrunc(Func, TimeUnit):
5971class TimeTrunc(Func, TimeUnit):
5972    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timetrunc'
class DateFromParts(Func):
5975class DateFromParts(Func):
5976    _sql_names = ["DATE_FROM_PARTS", "DATEFROMPARTS"]
5977    arg_types = {"year": True, "month": True, "day": True}
arg_types = {'year': True, 'month': True, 'day': True}
key = 'datefromparts'
class TimeFromParts(Func):
5980class TimeFromParts(Func):
5981    _sql_names = ["TIME_FROM_PARTS", "TIMEFROMPARTS"]
5982    arg_types = {
5983        "hour": True,
5984        "min": True,
5985        "sec": True,
5986        "nano": False,
5987        "fractions": False,
5988        "precision": False,
5989    }
arg_types = {'hour': True, 'min': True, 'sec': True, 'nano': False, 'fractions': False, 'precision': False}
key = 'timefromparts'
class DateStrToDate(Func):
5992class DateStrToDate(Func):
5993    pass
key = 'datestrtodate'
class DateToDateStr(Func):
5996class DateToDateStr(Func):
5997    pass
key = 'datetodatestr'
class DateToDi(Func):
6000class DateToDi(Func):
6001    pass
key = 'datetodi'
class Date(Func):
6005class Date(Func):
6006    arg_types = {"this": False, "zone": False, "expressions": False}
6007    is_var_len_args = True
arg_types = {'this': False, 'zone': False, 'expressions': False}
is_var_len_args = True
key = 'date'
class Day(Func):
6010class Day(Func):
6011    pass
key = 'day'
class Decode(Func):
6014class Decode(Func):
6015    arg_types = {"this": True, "charset": True, "replace": False}
arg_types = {'this': True, 'charset': True, 'replace': False}
key = 'decode'
class DiToDate(Func):
6018class DiToDate(Func):
6019    pass
key = 'ditodate'
class Encode(Func):
6022class Encode(Func):
6023    arg_types = {"this": True, "charset": True}
arg_types = {'this': True, 'charset': True}
key = 'encode'
class Exp(Func):
6026class Exp(Func):
6027    pass
key = 'exp'
class Explode(Func, UDTF):
6031class Explode(Func, UDTF):
6032    arg_types = {"this": True, "expressions": False}
6033    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'explode'
class Inline(Func):
6037class Inline(Func):
6038    pass
key = 'inline'
class ExplodeOuter(Explode):
6041class ExplodeOuter(Explode):
6042    pass
key = 'explodeouter'
class Posexplode(Explode):
6045class Posexplode(Explode):
6046    pass
key = 'posexplode'
class PosexplodeOuter(Posexplode, ExplodeOuter):
6049class PosexplodeOuter(Posexplode, ExplodeOuter):
6050    pass
key = 'posexplodeouter'
class Unnest(Func, UDTF):
6053class Unnest(Func, UDTF):
6054    arg_types = {
6055        "expressions": True,
6056        "alias": False,
6057        "offset": False,
6058        "explode_array": False,
6059    }
6060
6061    @property
6062    def selects(self) -> t.List[Expression]:
6063        columns = super().selects
6064        offset = self.args.get("offset")
6065        if offset:
6066            columns = columns + [to_identifier("offset") if offset is True else offset]
6067        return columns
arg_types = {'expressions': True, 'alias': False, 'offset': False, 'explode_array': False}
selects: List[Expression]
6061    @property
6062    def selects(self) -> t.List[Expression]:
6063        columns = super().selects
6064        offset = self.args.get("offset")
6065        if offset:
6066            columns = columns + [to_identifier("offset") if offset is True else offset]
6067        return columns
key = 'unnest'
class Floor(Func):
6070class Floor(Func):
6071    arg_types = {"this": True, "decimals": False, "to": False}
arg_types = {'this': True, 'decimals': False, 'to': False}
key = 'floor'
class FromBase64(Func):
6074class FromBase64(Func):
6075    pass
key = 'frombase64'
class FeaturesAtTime(Func):
6078class FeaturesAtTime(Func):
6079    arg_types = {"this": True, "time": False, "num_rows": False, "ignore_feature_nulls": False}
arg_types = {'this': True, 'time': False, 'num_rows': False, 'ignore_feature_nulls': False}
key = 'featuresattime'
class ToBase64(Func):
6082class ToBase64(Func):
6083    pass
key = 'tobase64'
class FromISO8601Timestamp(Func):
6087class FromISO8601Timestamp(Func):
6088    _sql_names = ["FROM_ISO8601_TIMESTAMP"]
key = 'fromiso8601timestamp'
class GapFill(Func):
6091class GapFill(Func):
6092    arg_types = {
6093        "this": True,
6094        "ts_column": True,
6095        "bucket_width": True,
6096        "partitioning_columns": False,
6097        "value_columns": False,
6098        "origin": False,
6099        "ignore_nulls": False,
6100    }
arg_types = {'this': True, 'ts_column': True, 'bucket_width': True, 'partitioning_columns': False, 'value_columns': False, 'origin': False, 'ignore_nulls': False}
key = 'gapfill'
class GenerateDateArray(Func):
6104class GenerateDateArray(Func):
6105    arg_types = {"start": True, "end": True, "step": False}
arg_types = {'start': True, 'end': True, 'step': False}
key = 'generatedatearray'
class GenerateTimestampArray(Func):
6109class GenerateTimestampArray(Func):
6110    arg_types = {"start": True, "end": True, "step": True}
arg_types = {'start': True, 'end': True, 'step': True}
key = 'generatetimestamparray'
class Greatest(Func):
6113class Greatest(Func):
6114    arg_types = {"this": True, "expressions": False}
6115    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'greatest'
class OverflowTruncateBehavior(Expression):
6120class OverflowTruncateBehavior(Expression):
6121    arg_types = {"this": False, "with_count": True}
arg_types = {'this': False, 'with_count': True}
key = 'overflowtruncatebehavior'
class GroupConcat(AggFunc):
6124class GroupConcat(AggFunc):
6125    arg_types = {"this": True, "separator": False, "on_overflow": False}
arg_types = {'this': True, 'separator': False, 'on_overflow': False}
key = 'groupconcat'
class Hex(Func):
6128class Hex(Func):
6129    pass
key = 'hex'
class LowerHex(Hex):
6132class LowerHex(Hex):
6133    pass
key = 'lowerhex'
class And(Connector, Func):
6136class And(Connector, Func):
6137    pass
key = 'and'
class Or(Connector, Func):
6140class Or(Connector, Func):
6141    pass
key = 'or'
class Xor(Connector, Func):
6144class Xor(Connector, Func):
6145    arg_types = {"this": False, "expression": False, "expressions": False}
arg_types = {'this': False, 'expression': False, 'expressions': False}
key = 'xor'
class If(Func):
6148class If(Func):
6149    arg_types = {"this": True, "true": True, "false": False}
6150    _sql_names = ["IF", "IIF"]
arg_types = {'this': True, 'true': True, 'false': False}
key = 'if'
class Nullif(Func):
6153class Nullif(Func):
6154    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'nullif'
class Initcap(Func):
6157class Initcap(Func):
6158    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'initcap'
class IsAscii(Func):
6161class IsAscii(Func):
6162    pass
key = 'isascii'
class IsNan(Func):
6165class IsNan(Func):
6166    _sql_names = ["IS_NAN", "ISNAN"]
key = 'isnan'
class Int64(Func):
6170class Int64(Func):
6171    pass
key = 'int64'
class IsInf(Func):
6174class IsInf(Func):
6175    _sql_names = ["IS_INF", "ISINF"]
key = 'isinf'
class JSON(Expression):
6179class JSON(Expression):
6180    arg_types = {"this": False, "with": False, "unique": False}
arg_types = {'this': False, 'with': False, 'unique': False}
key = 'json'
class JSONPath(Expression):
6183class JSONPath(Expression):
6184    arg_types = {"expressions": True, "escape": False}
6185
6186    @property
6187    def output_name(self) -> str:
6188        last_segment = self.expressions[-1].this
6189        return last_segment if isinstance(last_segment, str) else ""
arg_types = {'expressions': True, 'escape': False}
output_name: str
6186    @property
6187    def output_name(self) -> str:
6188        last_segment = self.expressions[-1].this
6189        return last_segment if isinstance(last_segment, str) else ""

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'jsonpath'
class JSONPathPart(Expression):
6192class JSONPathPart(Expression):
6193    arg_types = {}
arg_types = {}
key = 'jsonpathpart'
class JSONPathFilter(JSONPathPart):
6196class JSONPathFilter(JSONPathPart):
6197    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathfilter'
class JSONPathKey(JSONPathPart):
6200class JSONPathKey(JSONPathPart):
6201    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathkey'
class JSONPathRecursive(JSONPathPart):
6204class JSONPathRecursive(JSONPathPart):
6205    arg_types = {"this": False}
arg_types = {'this': False}
key = 'jsonpathrecursive'
class JSONPathRoot(JSONPathPart):
6208class JSONPathRoot(JSONPathPart):
6209    pass
key = 'jsonpathroot'
class JSONPathScript(JSONPathPart):
6212class JSONPathScript(JSONPathPart):
6213    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathscript'
class JSONPathSlice(JSONPathPart):
6216class JSONPathSlice(JSONPathPart):
6217    arg_types = {"start": False, "end": False, "step": False}
arg_types = {'start': False, 'end': False, 'step': False}
key = 'jsonpathslice'
class JSONPathSelector(JSONPathPart):
6220class JSONPathSelector(JSONPathPart):
6221    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathselector'
class JSONPathSubscript(JSONPathPart):
6224class JSONPathSubscript(JSONPathPart):
6225    arg_types = {"this": True}
arg_types = {'this': True}
key = 'jsonpathsubscript'
class JSONPathUnion(JSONPathPart):
6228class JSONPathUnion(JSONPathPart):
6229    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'jsonpathunion'
class JSONPathWildcard(JSONPathPart):
6232class JSONPathWildcard(JSONPathPart):
6233    pass
key = 'jsonpathwildcard'
class FormatJson(Expression):
6236class FormatJson(Expression):
6237    pass
key = 'formatjson'
class JSONKeyValue(Expression):
6240class JSONKeyValue(Expression):
6241    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'jsonkeyvalue'
class JSONObject(Func):
6244class JSONObject(Func):
6245    arg_types = {
6246        "expressions": False,
6247        "null_handling": False,
6248        "unique_keys": False,
6249        "return_type": False,
6250        "encoding": False,
6251    }
arg_types = {'expressions': False, 'null_handling': False, 'unique_keys': False, 'return_type': False, 'encoding': False}
key = 'jsonobject'
class JSONObjectAgg(AggFunc):
6254class JSONObjectAgg(AggFunc):
6255    arg_types = {
6256        "expressions": False,
6257        "null_handling": False,
6258        "unique_keys": False,
6259        "return_type": False,
6260        "encoding": False,
6261    }
arg_types = {'expressions': False, 'null_handling': False, 'unique_keys': False, 'return_type': False, 'encoding': False}
key = 'jsonobjectagg'
class JSONBObjectAgg(AggFunc):
6265class JSONBObjectAgg(AggFunc):
6266    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'jsonbobjectagg'
class JSONArray(Func):
6270class JSONArray(Func):
6271    arg_types = {
6272        "expressions": True,
6273        "null_handling": False,
6274        "return_type": False,
6275        "strict": False,
6276    }
arg_types = {'expressions': True, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarray'
class JSONArrayAgg(Func):
6280class JSONArrayAgg(Func):
6281    arg_types = {
6282        "this": True,
6283        "order": False,
6284        "null_handling": False,
6285        "return_type": False,
6286        "strict": False,
6287    }
arg_types = {'this': True, 'order': False, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarrayagg'
class JSONExists(Func):
6290class JSONExists(Func):
6291    arg_types = {"this": True, "path": True, "passing": False, "on_condition": False}
arg_types = {'this': True, 'path': True, 'passing': False, 'on_condition': False}
key = 'jsonexists'
class JSONColumnDef(Expression):
6296class JSONColumnDef(Expression):
6297    arg_types = {"this": False, "kind": False, "path": False, "nested_schema": False}
arg_types = {'this': False, 'kind': False, 'path': False, 'nested_schema': False}
key = 'jsoncolumndef'
class JSONSchema(Expression):
6300class JSONSchema(Expression):
6301    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'jsonschema'
class JSONValue(Expression):
6305class JSONValue(Expression):
6306    arg_types = {
6307        "this": True,
6308        "path": True,
6309        "returning": False,
6310        "on_condition": False,
6311    }
arg_types = {'this': True, 'path': True, 'returning': False, 'on_condition': False}
key = 'jsonvalue'
class JSONValueArray(Func):
6314class JSONValueArray(Func):
6315    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'jsonvaluearray'
class JSONTable(Func):
6319class JSONTable(Func):
6320    arg_types = {
6321        "this": True,
6322        "schema": True,
6323        "path": False,
6324        "error_handling": False,
6325        "empty_handling": False,
6326    }
arg_types = {'this': True, 'schema': True, 'path': False, 'error_handling': False, 'empty_handling': False}
key = 'jsontable'
class ObjectInsert(Func):
6330class ObjectInsert(Func):
6331    arg_types = {
6332        "this": True,
6333        "key": True,
6334        "value": True,
6335        "update_flag": False,
6336    }
arg_types = {'this': True, 'key': True, 'value': True, 'update_flag': False}
key = 'objectinsert'
class OpenJSONColumnDef(Expression):
6339class OpenJSONColumnDef(Expression):
6340    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
arg_types = {'this': True, 'kind': True, 'path': False, 'as_json': False}
key = 'openjsoncolumndef'
class OpenJSON(Func):
6343class OpenJSON(Func):
6344    arg_types = {"this": True, "path": False, "expressions": False}
arg_types = {'this': True, 'path': False, 'expressions': False}
key = 'openjson'
class JSONBContains(Binary, Func):
6347class JSONBContains(Binary, Func):
6348    _sql_names = ["JSONB_CONTAINS"]
key = 'jsonbcontains'
class JSONBExists(Func):
6351class JSONBExists(Func):
6352    arg_types = {"this": True, "path": True}
6353    _sql_names = ["JSONB_EXISTS"]
arg_types = {'this': True, 'path': True}
key = 'jsonbexists'
class JSONExtract(Binary, Func):
6356class JSONExtract(Binary, Func):
6357    arg_types = {
6358        "this": True,
6359        "expression": True,
6360        "only_json_types": False,
6361        "expressions": False,
6362        "variant_extract": False,
6363        "json_query": False,
6364        "option": False,
6365        "quote": False,
6366        "on_condition": False,
6367    }
6368    _sql_names = ["JSON_EXTRACT"]
6369    is_var_len_args = True
6370
6371    @property
6372    def output_name(self) -> str:
6373        return self.expression.output_name if not self.expressions else ""
arg_types = {'this': True, 'expression': True, 'only_json_types': False, 'expressions': False, 'variant_extract': False, 'json_query': False, 'option': False, 'quote': False, 'on_condition': False}
is_var_len_args = True
output_name: str
6371    @property
6372    def output_name(self) -> str:
6373        return self.expression.output_name if not self.expressions else ""

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'jsonextract'
class JSONExtractQuote(Expression):
6377class JSONExtractQuote(Expression):
6378    arg_types = {
6379        "option": True,
6380        "scalar": False,
6381    }
arg_types = {'option': True, 'scalar': False}
key = 'jsonextractquote'
class JSONExtractArray(Func):
6384class JSONExtractArray(Func):
6385    arg_types = {"this": True, "expression": False}
6386    _sql_names = ["JSON_EXTRACT_ARRAY"]
arg_types = {'this': True, 'expression': False}
key = 'jsonextractarray'
class JSONExtractScalar(Binary, Func):
6389class JSONExtractScalar(Binary, Func):
6390    arg_types = {"this": True, "expression": True, "only_json_types": False, "expressions": False}
6391    _sql_names = ["JSON_EXTRACT_SCALAR"]
6392    is_var_len_args = True
6393
6394    @property
6395    def output_name(self) -> str:
6396        return self.expression.output_name
arg_types = {'this': True, 'expression': True, 'only_json_types': False, 'expressions': False}
is_var_len_args = True
output_name: str
6394    @property
6395    def output_name(self) -> str:
6396        return self.expression.output_name

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'jsonextractscalar'
class JSONBExtract(Binary, Func):
6399class JSONBExtract(Binary, Func):
6400    _sql_names = ["JSONB_EXTRACT"]
key = 'jsonbextract'
class JSONBExtractScalar(Binary, Func):
6403class JSONBExtractScalar(Binary, Func):
6404    _sql_names = ["JSONB_EXTRACT_SCALAR"]
key = 'jsonbextractscalar'
class JSONFormat(Func):
6407class JSONFormat(Func):
6408    arg_types = {"this": False, "options": False, "is_json": False}
6409    _sql_names = ["JSON_FORMAT"]
arg_types = {'this': False, 'options': False, 'is_json': False}
key = 'jsonformat'
class JSONArrayContains(Binary, Predicate, Func):
6413class JSONArrayContains(Binary, Predicate, Func):
6414    _sql_names = ["JSON_ARRAY_CONTAINS"]
key = 'jsonarraycontains'
class ParseJSON(Func):
6417class ParseJSON(Func):
6418    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
6419    # Snowflake also has TRY_PARSE_JSON, which is represented using `safe`
6420    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
6421    arg_types = {"this": True, "expression": False, "safe": False}
arg_types = {'this': True, 'expression': False, 'safe': False}
key = 'parsejson'
class Least(Func):
6424class Least(Func):
6425    arg_types = {"this": True, "expressions": False}
6426    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'least'
class Left(Func):
6429class Left(Func):
6430    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'left'
class Length(Func):
6437class Length(Func):
6438    arg_types = {"this": True, "binary": False, "encoding": False}
6439    _sql_names = ["LENGTH", "LEN", "CHAR_LENGTH", "CHARACTER_LENGTH"]
arg_types = {'this': True, 'binary': False, 'encoding': False}
key = 'length'
class Levenshtein(Func):
6442class Levenshtein(Func):
6443    arg_types = {
6444        "this": True,
6445        "expression": False,
6446        "ins_cost": False,
6447        "del_cost": False,
6448        "sub_cost": False,
6449        "max_dist": False,
6450    }
arg_types = {'this': True, 'expression': False, 'ins_cost': False, 'del_cost': False, 'sub_cost': False, 'max_dist': False}
key = 'levenshtein'
class Ln(Func):
6453class Ln(Func):
6454    pass
key = 'ln'
class Log(Func):
6457class Log(Func):
6458    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'log'
class LogicalOr(AggFunc):
6461class LogicalOr(AggFunc):
6462    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
key = 'logicalor'
class LogicalAnd(AggFunc):
6465class LogicalAnd(AggFunc):
6466    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
key = 'logicaland'
class Lower(Func):
6469class Lower(Func):
6470    _sql_names = ["LOWER", "LCASE"]
key = 'lower'
class Map(Func):
6473class Map(Func):
6474    arg_types = {"keys": False, "values": False}
6475
6476    @property
6477    def keys(self) -> t.List[Expression]:
6478        keys = self.args.get("keys")
6479        return keys.expressions if keys else []
6480
6481    @property
6482    def values(self) -> t.List[Expression]:
6483        values = self.args.get("values")
6484        return values.expressions if values else []
arg_types = {'keys': False, 'values': False}
keys: List[Expression]
6476    @property
6477    def keys(self) -> t.List[Expression]:
6478        keys = self.args.get("keys")
6479        return keys.expressions if keys else []
values: List[Expression]
6481    @property
6482    def values(self) -> t.List[Expression]:
6483        values = self.args.get("values")
6484        return values.expressions if values else []
key = 'map'
class ToMap(Func):
6488class ToMap(Func):
6489    pass
key = 'tomap'
class MapFromEntries(Func):
6492class MapFromEntries(Func):
6493    pass
key = 'mapfromentries'
class ScopeResolution(Expression):
6497class ScopeResolution(Expression):
6498    arg_types = {"this": False, "expression": True}
arg_types = {'this': False, 'expression': True}
key = 'scoperesolution'
class Stream(Expression):
6501class Stream(Expression):
6502    pass
key = 'stream'
class StarMap(Func):
6505class StarMap(Func):
6506    pass
key = 'starmap'
class VarMap(Func):
6509class VarMap(Func):
6510    arg_types = {"keys": True, "values": True}
6511    is_var_len_args = True
6512
6513    @property
6514    def keys(self) -> t.List[Expression]:
6515        return self.args["keys"].expressions
6516
6517    @property
6518    def values(self) -> t.List[Expression]:
6519        return self.args["values"].expressions
arg_types = {'keys': True, 'values': True}
is_var_len_args = True
keys: List[Expression]
6513    @property
6514    def keys(self) -> t.List[Expression]:
6515        return self.args["keys"].expressions
values: List[Expression]
6517    @property
6518    def values(self) -> t.List[Expression]:
6519        return self.args["values"].expressions
key = 'varmap'
class MatchAgainst(Func):
6523class MatchAgainst(Func):
6524    arg_types = {"this": True, "expressions": True, "modifier": False}
arg_types = {'this': True, 'expressions': True, 'modifier': False}
key = 'matchagainst'
class Max(AggFunc):
6527class Max(AggFunc):
6528    arg_types = {"this": True, "expressions": False}
6529    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'max'
class MD5(Func):
6532class MD5(Func):
6533    _sql_names = ["MD5"]
key = 'md5'
class MD5Digest(Func):
6537class MD5Digest(Func):
6538    _sql_names = ["MD5_DIGEST"]
key = 'md5digest'
class Median(AggFunc):
6541class Median(AggFunc):
6542    pass
key = 'median'
class Min(AggFunc):
6545class Min(AggFunc):
6546    arg_types = {"this": True, "expressions": False}
6547    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'min'
class Month(Func):
6550class Month(Func):
6551    pass
key = 'month'
class AddMonths(Func):
6554class AddMonths(Func):
6555    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'addmonths'
class Nvl2(Func):
6558class Nvl2(Func):
6559    arg_types = {"this": True, "true": True, "false": False}
arg_types = {'this': True, 'true': True, 'false': False}
key = 'nvl2'
class Normalize(Func):
6562class Normalize(Func):
6563    arg_types = {"this": True, "form": False}
arg_types = {'this': True, 'form': False}
key = 'normalize'
class Overlay(Func):
6566class Overlay(Func):
6567    arg_types = {"this": True, "expression": True, "from": True, "for": False}
arg_types = {'this': True, 'expression': True, 'from': True, 'for': False}
key = 'overlay'
class Predict(Func):
6571class Predict(Func):
6572    arg_types = {"this": True, "expression": True, "params_struct": False}
arg_types = {'this': True, 'expression': True, 'params_struct': False}
key = 'predict'
class Pow(Binary, Func):
6575class Pow(Binary, Func):
6576    _sql_names = ["POWER", "POW"]
key = 'pow'
class PercentileCont(AggFunc):
6579class PercentileCont(AggFunc):
6580    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentilecont'
class PercentileDisc(AggFunc):
6583class PercentileDisc(AggFunc):
6584    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentiledisc'
class Quantile(AggFunc):
6587class Quantile(AggFunc):
6588    arg_types = {"this": True, "quantile": True}
arg_types = {'this': True, 'quantile': True}
key = 'quantile'
class ApproxQuantile(Quantile):
6591class ApproxQuantile(Quantile):
6592    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
arg_types = {'this': True, 'quantile': True, 'accuracy': False, 'weight': False}
key = 'approxquantile'
class Quarter(Func):
6595class Quarter(Func):
6596    pass
key = 'quarter'
class Rand(Func):
6601class Rand(Func):
6602    _sql_names = ["RAND", "RANDOM"]
6603    arg_types = {"this": False, "lower": False, "upper": False}
arg_types = {'this': False, 'lower': False, 'upper': False}
key = 'rand'
class Randn(Func):
6606class Randn(Func):
6607    arg_types = {"this": False}
arg_types = {'this': False}
key = 'randn'
class RangeN(Func):
6610class RangeN(Func):
6611    arg_types = {"this": True, "expressions": True, "each": False}
arg_types = {'this': True, 'expressions': True, 'each': False}
key = 'rangen'
class ReadCSV(Func):
6614class ReadCSV(Func):
6615    _sql_names = ["READ_CSV"]
6616    is_var_len_args = True
6617    arg_types = {"this": True, "expressions": False}
is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
key = 'readcsv'
class Reduce(Func):
6620class Reduce(Func):
6621    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
arg_types = {'this': True, 'initial': True, 'merge': True, 'finish': False}
key = 'reduce'
class RegexpExtract(Func):
6624class RegexpExtract(Func):
6625    arg_types = {
6626        "this": True,
6627        "expression": True,
6628        "position": False,
6629        "occurrence": False,
6630        "parameters": False,
6631        "group": False,
6632    }
arg_types = {'this': True, 'expression': True, 'position': False, 'occurrence': False, 'parameters': False, 'group': False}
key = 'regexpextract'
class RegexpExtractAll(Func):
6635class RegexpExtractAll(Func):
6636    arg_types = {
6637        "this": True,
6638        "expression": True,
6639        "position": False,
6640        "occurrence": False,
6641        "parameters": False,
6642        "group": False,
6643    }
arg_types = {'this': True, 'expression': True, 'position': False, 'occurrence': False, 'parameters': False, 'group': False}
key = 'regexpextractall'
class RegexpReplace(Func):
6646class RegexpReplace(Func):
6647    arg_types = {
6648        "this": True,
6649        "expression": True,
6650        "replacement": False,
6651        "position": False,
6652        "occurrence": False,
6653        "modifiers": False,
6654    }
arg_types = {'this': True, 'expression': True, 'replacement': False, 'position': False, 'occurrence': False, 'modifiers': False}
key = 'regexpreplace'
class RegexpLike(Binary, Func):
6657class RegexpLike(Binary, Func):
6658    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexplike'
class RegexpILike(Binary, Func):
6661class RegexpILike(Binary, Func):
6662    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexpilike'
class RegexpSplit(Func):
6667class RegexpSplit(Func):
6668    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'regexpsplit'
class Repeat(Func):
6671class Repeat(Func):
6672    arg_types = {"this": True, "times": True}
arg_types = {'this': True, 'times': True}
key = 'repeat'
class Replace(Func):
6676class Replace(Func):
6677    arg_types = {"this": True, "expression": True, "replacement": False}
arg_types = {'this': True, 'expression': True, 'replacement': False}
key = 'replace'
class Round(Func):
6682class Round(Func):
6683    arg_types = {"this": True, "decimals": False, "truncate": False}
arg_types = {'this': True, 'decimals': False, 'truncate': False}
key = 'round'
class RowNumber(Func):
6686class RowNumber(Func):
6687    arg_types = {"this": False}
arg_types = {'this': False}
key = 'rownumber'
class SafeDivide(Func):
6690class SafeDivide(Func):
6691    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'safedivide'
class SHA(Func):
6694class SHA(Func):
6695    _sql_names = ["SHA", "SHA1"]
key = 'sha'
class SHA2(Func):
6698class SHA2(Func):
6699    _sql_names = ["SHA2"]
6700    arg_types = {"this": True, "length": False}
arg_types = {'this': True, 'length': False}
key = 'sha2'
class Sign(Func):
6703class Sign(Func):
6704    _sql_names = ["SIGN", "SIGNUM"]
key = 'sign'
class SortArray(Func):
6707class SortArray(Func):
6708    arg_types = {"this": True, "asc": False}
arg_types = {'this': True, 'asc': False}
key = 'sortarray'
class Split(Func):
6711class Split(Func):
6712    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'split'
class SplitPart(Func):
6716class SplitPart(Func):
6717    arg_types = {"this": True, "delimiter": True, "part_index": True}
arg_types = {'this': True, 'delimiter': True, 'part_index': True}
key = 'splitpart'
class Substring(Func):
6722class Substring(Func):
6723    _sql_names = ["SUBSTRING", "SUBSTR"]
6724    arg_types = {"this": True, "start": False, "length": False}
arg_types = {'this': True, 'start': False, 'length': False}
key = 'substring'
class StandardHash(Func):
6727class StandardHash(Func):
6728    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'standardhash'
class StartsWith(Func):
6731class StartsWith(Func):
6732    _sql_names = ["STARTS_WITH", "STARTSWITH"]
6733    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'startswith'
class EndsWith(Func):
6736class EndsWith(Func):
6737    _sql_names = ["ENDS_WITH", "ENDSWITH"]
6738    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'endswith'
class StrPosition(Func):
6741class StrPosition(Func):
6742    arg_types = {
6743        "this": True,
6744        "substr": True,
6745        "position": False,
6746        "occurrence": False,
6747    }
arg_types = {'this': True, 'substr': True, 'position': False, 'occurrence': False}
key = 'strposition'
class StrToDate(Func):
6750class StrToDate(Func):
6751    arg_types = {"this": True, "format": False, "safe": False}
arg_types = {'this': True, 'format': False, 'safe': False}
key = 'strtodate'
class StrToTime(Func):
6754class StrToTime(Func):
6755    arg_types = {"this": True, "format": True, "zone": False, "safe": False}
arg_types = {'this': True, 'format': True, 'zone': False, 'safe': False}
key = 'strtotime'
class StrToUnix(Func):
6760class StrToUnix(Func):
6761    arg_types = {"this": False, "format": False}
arg_types = {'this': False, 'format': False}
key = 'strtounix'
class StrToMap(Func):
6766class StrToMap(Func):
6767    arg_types = {
6768        "this": True,
6769        "pair_delim": False,
6770        "key_value_delim": False,
6771        "duplicate_resolution_callback": False,
6772    }
arg_types = {'this': True, 'pair_delim': False, 'key_value_delim': False, 'duplicate_resolution_callback': False}
key = 'strtomap'
class NumberToStr(Func):
6775class NumberToStr(Func):
6776    arg_types = {"this": True, "format": True, "culture": False}
arg_types = {'this': True, 'format': True, 'culture': False}
key = 'numbertostr'
class FromBase(Func):
6779class FromBase(Func):
6780    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'frombase'
class Struct(Func):
6783class Struct(Func):
6784    arg_types = {"expressions": False}
6785    is_var_len_args = True
arg_types = {'expressions': False}
is_var_len_args = True
key = 'struct'
class StructExtract(Func):
6788class StructExtract(Func):
6789    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'structextract'
class Stuff(Func):
6794class Stuff(Func):
6795    _sql_names = ["STUFF", "INSERT"]
6796    arg_types = {"this": True, "start": True, "length": True, "expression": True}
arg_types = {'this': True, 'start': True, 'length': True, 'expression': True}
key = 'stuff'
class Sum(AggFunc):
6799class Sum(AggFunc):
6800    pass
key = 'sum'
class Sqrt(Func):
6803class Sqrt(Func):
6804    pass
key = 'sqrt'
class Stddev(AggFunc):
6807class Stddev(AggFunc):
6808    _sql_names = ["STDDEV", "STDEV"]
key = 'stddev'
class StddevPop(AggFunc):
6811class StddevPop(AggFunc):
6812    pass
key = 'stddevpop'
class StddevSamp(AggFunc):
6815class StddevSamp(AggFunc):
6816    pass
key = 'stddevsamp'
class Time(Func):
6820class Time(Func):
6821    arg_types = {"this": False, "zone": False}
arg_types = {'this': False, 'zone': False}
key = 'time'
class TimeToStr(Func):
6824class TimeToStr(Func):
6825    arg_types = {"this": True, "format": True, "culture": False, "zone": False}
arg_types = {'this': True, 'format': True, 'culture': False, 'zone': False}
key = 'timetostr'
class TimeToTimeStr(Func):
6828class TimeToTimeStr(Func):
6829    pass
key = 'timetotimestr'
class TimeToUnix(Func):
6832class TimeToUnix(Func):
6833    pass
key = 'timetounix'
class TimeStrToDate(Func):
6836class TimeStrToDate(Func):
6837    pass
key = 'timestrtodate'
class TimeStrToTime(Func):
6840class TimeStrToTime(Func):
6841    arg_types = {"this": True, "zone": False}
arg_types = {'this': True, 'zone': False}
key = 'timestrtotime'
class TimeStrToUnix(Func):
6844class TimeStrToUnix(Func):
6845    pass
key = 'timestrtounix'
class Trim(Func):
6848class Trim(Func):
6849    arg_types = {
6850        "this": True,
6851        "expression": False,
6852        "position": False,
6853        "collation": False,
6854    }
arg_types = {'this': True, 'expression': False, 'position': False, 'collation': False}
key = 'trim'
class TsOrDsAdd(Func, TimeUnit):
6857class TsOrDsAdd(Func, TimeUnit):
6858    # return_type is used to correctly cast the arguments of this expression when transpiling it
6859    arg_types = {"this": True, "expression": True, "unit": False, "return_type": False}
6860
6861    @property
6862    def return_type(self) -> DataType:
6863        return DataType.build(self.args.get("return_type") or DataType.Type.DATE)
arg_types = {'this': True, 'expression': True, 'unit': False, 'return_type': False}
return_type: DataType
6861    @property
6862    def return_type(self) -> DataType:
6863        return DataType.build(self.args.get("return_type") or DataType.Type.DATE)
key = 'tsordsadd'
class TsOrDsDiff(Func, TimeUnit):
6866class TsOrDsDiff(Func, TimeUnit):
6867    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'tsordsdiff'
class TsOrDsToDateStr(Func):
6870class TsOrDsToDateStr(Func):
6871    pass
key = 'tsordstodatestr'
class TsOrDsToDate(Func):
6874class TsOrDsToDate(Func):
6875    arg_types = {"this": True, "format": False, "safe": False}
arg_types = {'this': True, 'format': False, 'safe': False}
key = 'tsordstodate'
class TsOrDsToDatetime(Func):
6878class TsOrDsToDatetime(Func):
6879    pass
key = 'tsordstodatetime'
class TsOrDsToTime(Func):
6882class TsOrDsToTime(Func):
6883    arg_types = {"this": True, "format": False, "safe": False}
arg_types = {'this': True, 'format': False, 'safe': False}
key = 'tsordstotime'
class TsOrDsToTimestamp(Func):
6886class TsOrDsToTimestamp(Func):
6887    pass
key = 'tsordstotimestamp'
class TsOrDiToDi(Func):
6890class TsOrDiToDi(Func):
6891    pass
key = 'tsorditodi'
class Unhex(Func):
6894class Unhex(Func):
6895    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'unhex'
class Unicode(Func):
6898class Unicode(Func):
6899    pass
key = 'unicode'
class UnixDate(Func):
6903class UnixDate(Func):
6904    pass
key = 'unixdate'
class UnixToStr(Func):
6907class UnixToStr(Func):
6908    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'unixtostr'
class UnixToTime(Func):
6913class UnixToTime(Func):
6914    arg_types = {
6915        "this": True,
6916        "scale": False,
6917        "zone": False,
6918        "hours": False,
6919        "minutes": False,
6920        "format": False,
6921    }
6922
6923    SECONDS = Literal.number(0)
6924    DECIS = Literal.number(1)
6925    CENTIS = Literal.number(2)
6926    MILLIS = Literal.number(3)
6927    DECIMILLIS = Literal.number(4)
6928    CENTIMILLIS = Literal.number(5)
6929    MICROS = Literal.number(6)
6930    DECIMICROS = Literal.number(7)
6931    CENTIMICROS = Literal.number(8)
6932    NANOS = Literal.number(9)
arg_types = {'this': True, 'scale': False, 'zone': False, 'hours': False, 'minutes': False, 'format': False}
SECONDS = Literal(this=0, is_string=False)
DECIS = Literal(this=1, is_string=False)
CENTIS = Literal(this=2, is_string=False)
MILLIS = Literal(this=3, is_string=False)
DECIMILLIS = Literal(this=4, is_string=False)
CENTIMILLIS = Literal(this=5, is_string=False)
MICROS = Literal(this=6, is_string=False)
DECIMICROS = Literal(this=7, is_string=False)
CENTIMICROS = Literal(this=8, is_string=False)
NANOS = Literal(this=9, is_string=False)
key = 'unixtotime'
class UnixToTimeStr(Func):
6935class UnixToTimeStr(Func):
6936    pass
key = 'unixtotimestr'
class UnixSeconds(Func):
6939class UnixSeconds(Func):
6940    pass
key = 'unixseconds'
class Uuid(Func):
6943class Uuid(Func):
6944    _sql_names = ["UUID", "GEN_RANDOM_UUID", "GENERATE_UUID", "UUID_STRING"]
6945
6946    arg_types = {"this": False, "name": False}
arg_types = {'this': False, 'name': False}
key = 'uuid'
class TimestampFromParts(Func):
6949class TimestampFromParts(Func):
6950    _sql_names = ["TIMESTAMP_FROM_PARTS", "TIMESTAMPFROMPARTS"]
6951    arg_types = {
6952        "year": True,
6953        "month": True,
6954        "day": True,
6955        "hour": True,
6956        "min": True,
6957        "sec": True,
6958        "nano": False,
6959        "zone": False,
6960        "milli": False,
6961    }
arg_types = {'year': True, 'month': True, 'day': True, 'hour': True, 'min': True, 'sec': True, 'nano': False, 'zone': False, 'milli': False}
key = 'timestampfromparts'
class Upper(Func):
6964class Upper(Func):
6965    _sql_names = ["UPPER", "UCASE"]
key = 'upper'
class Corr(Binary, AggFunc):
6968class Corr(Binary, AggFunc):
6969    pass
key = 'corr'
class Variance(AggFunc):
6972class Variance(AggFunc):
6973    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
key = 'variance'
class VariancePop(AggFunc):
6976class VariancePop(AggFunc):
6977    _sql_names = ["VARIANCE_POP", "VAR_POP"]
key = 'variancepop'
class CovarSamp(Binary, AggFunc):
6980class CovarSamp(Binary, AggFunc):
6981    pass
key = 'covarsamp'
class CovarPop(Binary, AggFunc):
6984class CovarPop(Binary, AggFunc):
6985    pass
key = 'covarpop'
class Week(Func):
6988class Week(Func):
6989    arg_types = {"this": True, "mode": False}
arg_types = {'this': True, 'mode': False}
key = 'week'
class XMLElement(Func):
6992class XMLElement(Func):
6993    _sql_names = ["XMLELEMENT"]
6994    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'xmlelement'
class XMLTable(Func):
6997class XMLTable(Func):
6998    arg_types = {
6999        "this": True,
7000        "namespaces": False,
7001        "passing": False,
7002        "columns": False,
7003        "by_ref": False,
7004    }
arg_types = {'this': True, 'namespaces': False, 'passing': False, 'columns': False, 'by_ref': False}
key = 'xmltable'
class XMLNamespace(Expression):
7007class XMLNamespace(Expression):
7008    pass
key = 'xmlnamespace'
class XMLKeyValueOption(Expression):
7012class XMLKeyValueOption(Expression):
7013    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'xmlkeyvalueoption'
class Year(Func):
7016class Year(Func):
7017    pass
key = 'year'
class Use(Expression):
7020class Use(Expression):
7021    arg_types = {"this": False, "expressions": False, "kind": False}
arg_types = {'this': False, 'expressions': False, 'kind': False}
key = 'use'
class Merge(DML):
7024class Merge(DML):
7025    arg_types = {
7026        "this": True,
7027        "using": True,
7028        "on": True,
7029        "whens": True,
7030        "with": False,
7031        "returning": False,
7032    }
arg_types = {'this': True, 'using': True, 'on': True, 'whens': True, 'with': False, 'returning': False}
key = 'merge'
class When(Expression):
7035class When(Expression):
7036    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
arg_types = {'matched': True, 'source': False, 'condition': False, 'then': True}
key = 'when'
class Whens(Expression):
7039class Whens(Expression):
7040    """Wraps around one or more WHEN [NOT] MATCHED [...] clauses."""
7041
7042    arg_types = {"expressions": True}

Wraps around one or more WHEN [NOT] MATCHED [...] clauses.

arg_types = {'expressions': True}
key = 'whens'
class NextValueFor(Func):
7047class NextValueFor(Func):
7048    arg_types = {"this": True, "order": False}
arg_types = {'this': True, 'order': False}
key = 'nextvaluefor'
class Semicolon(Expression):
7053class Semicolon(Expression):
7054    arg_types = {}
arg_types = {}
key = 'semicolon'
class TableColumn(Expression):
7059class TableColumn(Expression):
7060    pass
key = 'tablecolumn'
ALL_FUNCTIONS = [<class 'Abs'>, <class 'AddMonths'>, <class 'And'>, <class 'AnonymousAggFunc'>, <class 'AnyValue'>, <class 'Apply'>, <class 'ApproxDistinct'>, <class 'ApproxQuantile'>, <class 'ApproxTopK'>, <class 'ArgMax'>, <class 'ArgMin'>, <class 'Array'>, <class 'ArrayAgg'>, <class 'ArrayAll'>, <class 'ArrayAny'>, <class 'ArrayConcat'>, <class 'ArrayConcatAgg'>, <class 'ArrayConstructCompact'>, <class 'ArrayContains'>, <class 'ArrayContainsAll'>, <class 'ArrayFilter'>, <class 'ArrayIntersect'>, <class 'ArrayOverlaps'>, <class 'ArrayRemove'>, <class 'ArraySize'>, <class 'ArraySort'>, <class 'ArraySum'>, <class 'ArrayToString'>, <class 'ArrayUnionAgg'>, <class 'ArrayUniqueAgg'>, <class 'Avg'>, <class 'Case'>, <class 'Cast'>, <class 'CastToStrType'>, <class 'Cbrt'>, <class 'Ceil'>, <class 'Chr'>, <class 'Coalesce'>, <class 'Collate'>, <class 'Columns'>, <class 'CombinedAggFunc'>, <class 'CombinedParameterizedAgg'>, <class 'Concat'>, <class 'ConcatWs'>, <class 'ConnectByRoot'>, <class 'Contains'>, <class 'Convert'>, <class 'ConvertTimezone'>, <class 'ConvertToCharset'>, <class 'Corr'>, <class 'Count'>, <class 'CountIf'>, <class 'CovarPop'>, <class 'CovarSamp'>, <class 'CurrentDate'>, <class 'CurrentDatetime'>, <class 'CurrentSchema'>, <class 'CurrentTime'>, <class 'CurrentTimestamp'>, <class 'CurrentTimestampLTZ'>, <class 'CurrentUser'>, <class 'Date'>, <class 'DateAdd'>, <class 'DateBin'>, <class 'DateDiff'>, <class 'DateFromParts'>, <class 'DateStrToDate'>, <class 'DateSub'>, <class 'DateToDateStr'>, <class 'DateToDi'>, <class 'DateTrunc'>, <class 'Datetime'>, <class 'DatetimeAdd'>, <class 'DatetimeDiff'>, <class 'DatetimeSub'>, <class 'DatetimeTrunc'>, <class 'Day'>, <class 'DayOfMonth'>, <class 'DayOfWeek'>, <class 'DayOfWeekIso'>, <class 'DayOfYear'>, <class 'Decode'>, <class 'DiToDate'>, <class 'Encode'>, <class 'EndsWith'>, <class 'Exists'>, <class 'Exp'>, <class 'Explode'>, <class 'ExplodeOuter'>, <class 'ExplodingGenerateSeries'>, <class 'Extract'>, <class 'FeaturesAtTime'>, <class 'First'>, <class 'FirstValue'>, <class 'Flatten'>, <class 'Floor'>, <class 'FromBase'>, <class 'FromBase64'>, <class 'FromISO8601Timestamp'>, <class 'GapFill'>, <class 'GenerateDateArray'>, <class 'GenerateSeries'>, <class 'GenerateTimestampArray'>, <class 'Greatest'>, <class 'GroupConcat'>, <class 'Hex'>, <class 'Hll'>, <class 'If'>, <class 'Initcap'>, <class 'Inline'>, <class 'Int64'>, <class 'IsAscii'>, <class 'IsInf'>, <class 'IsNan'>, <class 'JSONArray'>, <class 'JSONArrayAgg'>, <class 'JSONArrayContains'>, <class 'JSONBContains'>, <class 'JSONBExists'>, <class 'JSONBExtract'>, <class 'JSONBExtractScalar'>, <class 'JSONBObjectAgg'>, <class 'JSONCast'>, <class 'JSONExists'>, <class 'JSONExtract'>, <class 'JSONExtractArray'>, <class 'JSONExtractScalar'>, <class 'JSONFormat'>, <class 'JSONObject'>, <class 'JSONObjectAgg'>, <class 'JSONTable'>, <class 'JSONValueArray'>, <class 'Lag'>, <class 'Last'>, <class 'LastDay'>, <class 'LastValue'>, <class 'Lead'>, <class 'Least'>, <class 'Left'>, <class 'Length'>, <class 'Levenshtein'>, <class 'List'>, <class 'Ln'>, <class 'Log'>, <class 'LogicalAnd'>, <class 'LogicalOr'>, <class 'Lower'>, <class 'LowerHex'>, <class 'MD5'>, <class 'MD5Digest'>, <class 'MakeInterval'>, <class 'Map'>, <class 'MapFromEntries'>, <class 'MatchAgainst'>, <class 'Max'>, <class 'Median'>, <class 'Min'>, <class 'Month'>, <class 'MonthsBetween'>, <class 'NextValueFor'>, <class 'Normalize'>, <class 'NthValue'>, <class 'Nullif'>, <class 'NumberToStr'>, <class 'Nvl2'>, <class 'ObjectInsert'>, <class 'OpenJSON'>, <class 'Or'>, <class 'Overlay'>, <class 'Pad'>, <class 'ParameterizedAgg'>, <class 'ParseJSON'>, <class 'PercentileCont'>, <class 'PercentileDisc'>, <class 'Posexplode'>, <class 'PosexplodeOuter'>, <class 'Pow'>, <class 'Predict'>, <class 'Quantile'>, <class 'Quarter'>, <class 'Rand'>, <class 'Randn'>, <class 'RangeN'>, <class 'ReadCSV'>, <class 'Reduce'>, <class 'RegexpExtract'>, <class 'RegexpExtractAll'>, <class 'RegexpILike'>, <class 'RegexpLike'>, <class 'RegexpReplace'>, <class 'RegexpSplit'>, <class 'Repeat'>, <class 'Replace'>, <class 'Right'>, <class 'Round'>, <class 'RowNumber'>, <class 'SHA'>, <class 'SHA2'>, <class 'SafeDivide'>, <class 'Sign'>, <class 'SortArray'>, <class 'Split'>, <class 'SplitPart'>, <class 'Sqrt'>, <class 'StDistance'>, <class 'StPoint'>, <class 'StandardHash'>, <class 'StarMap'>, <class 'StartsWith'>, <class 'Stddev'>, <class 'StddevPop'>, <class 'StddevSamp'>, <class 'StrPosition'>, <class 'StrToDate'>, <class 'StrToMap'>, <class 'StrToTime'>, <class 'StrToUnix'>, <class 'String'>, <class 'StringToArray'>, <class 'Struct'>, <class 'StructExtract'>, <class 'Stuff'>, <class 'Substring'>, <class 'Sum'>, <class 'Time'>, <class 'TimeAdd'>, <class 'TimeDiff'>, <class 'TimeFromParts'>, <class 'TimeStrToDate'>, <class 'TimeStrToTime'>, <class 'TimeStrToUnix'>, <class 'TimeSub'>, <class 'TimeToStr'>, <class 'TimeToTimeStr'>, <class 'TimeToUnix'>, <class 'TimeTrunc'>, <class 'Timestamp'>, <class 'TimestampAdd'>, <class 'TimestampDiff'>, <class 'TimestampFromParts'>, <class 'TimestampSub'>, <class 'TimestampTrunc'>, <class 'ToArray'>, <class 'ToBase64'>, <class 'ToChar'>, <class 'ToDays'>, <class 'ToDouble'>, <class 'ToMap'>, <class 'ToNumber'>, <class 'Transform'>, <class 'Trim'>, <class 'Try'>, <class 'TryCast'>, <class 'TsOrDiToDi'>, <class 'TsOrDsAdd'>, <class 'TsOrDsDiff'>, <class 'TsOrDsToDate'>, <class 'TsOrDsToDateStr'>, <class 'TsOrDsToDatetime'>, <class 'TsOrDsToTime'>, <class 'TsOrDsToTimestamp'>, <class 'Unhex'>, <class 'Unicode'>, <class 'UnixDate'>, <class 'UnixSeconds'>, <class 'UnixToStr'>, <class 'UnixToTime'>, <class 'UnixToTimeStr'>, <class 'Unnest'>, <class 'Upper'>, <class 'Uuid'>, <class 'VarMap'>, <class 'Variance'>, <class 'VariancePop'>, <class 'Week'>, <class 'WeekOfYear'>, <class 'XMLElement'>, <class 'XMLTable'>, <class 'Xor'>, <class 'Year'>]
FUNCTION_BY_NAME = {'ABS': <class 'Abs'>, 'ADD_MONTHS': <class 'AddMonths'>, 'AND': <class 'And'>, 'ANONYMOUS_AGG_FUNC': <class 'AnonymousAggFunc'>, 'ANY_VALUE': <class 'AnyValue'>, 'APPLY': <class 'Apply'>, 'APPROX_DISTINCT': <class 'ApproxDistinct'>, 'APPROX_COUNT_DISTINCT': <class 'ApproxDistinct'>, 'APPROX_QUANTILE': <class 'ApproxQuantile'>, 'APPROX_TOP_K': <class 'ApproxTopK'>, 'ARG_MAX': <class 'ArgMax'>, 'ARGMAX': <class 'ArgMax'>, 'MAX_BY': <class 'ArgMax'>, 'ARG_MIN': <class 'ArgMin'>, 'ARGMIN': <class 'ArgMin'>, 'MIN_BY': <class 'ArgMin'>, 'ARRAY': <class 'Array'>, 'ARRAY_AGG': <class 'ArrayAgg'>, 'ARRAY_ALL': <class 'ArrayAll'>, 'ARRAY_ANY': <class 'ArrayAny'>, 'ARRAY_CONCAT': <class 'ArrayConcat'>, 'ARRAY_CAT': <class 'ArrayConcat'>, 'ARRAY_CONCAT_AGG': <class 'ArrayConcatAgg'>, 'ARRAY_CONSTRUCT_COMPACT': <class 'ArrayConstructCompact'>, 'ARRAY_CONTAINS': <class 'ArrayContains'>, 'ARRAY_HAS': <class 'ArrayContains'>, 'ARRAY_CONTAINS_ALL': <class 'ArrayContainsAll'>, 'ARRAY_HAS_ALL': <class 'ArrayContainsAll'>, 'FILTER': <class 'ArrayFilter'>, 'ARRAY_FILTER': <class 'ArrayFilter'>, 'ARRAY_INTERSECT': <class 'ArrayIntersect'>, 'ARRAY_INTERSECTION': <class 'ArrayIntersect'>, 'ARRAY_OVERLAPS': <class 'ArrayOverlaps'>, 'ARRAY_REMOVE': <class 'ArrayRemove'>, 'ARRAY_SIZE': <class 'ArraySize'>, 'ARRAY_LENGTH': <class 'ArraySize'>, 'ARRAY_SORT': <class 'ArraySort'>, 'ARRAY_SUM': <class 'ArraySum'>, 'ARRAY_TO_STRING': <class 'ArrayToString'>, 'ARRAY_JOIN': <class 'ArrayToString'>, 'ARRAY_UNION_AGG': <class 'ArrayUnionAgg'>, 'ARRAY_UNIQUE_AGG': <class 'ArrayUniqueAgg'>, 'AVG': <class 'Avg'>, 'CASE': <class 'Case'>, 'CAST': <class 'Cast'>, 'CAST_TO_STR_TYPE': <class 'CastToStrType'>, 'CBRT': <class 'Cbrt'>, 'CEIL': <class 'Ceil'>, 'CEILING': <class 'Ceil'>, 'CHR': <class 'Chr'>, 'CHAR': <class 'Chr'>, 'COALESCE': <class 'Coalesce'>, 'IFNULL': <class 'Coalesce'>, 'NVL': <class 'Coalesce'>, 'COLLATE': <class 'Collate'>, 'COLUMNS': <class 'Columns'>, 'COMBINED_AGG_FUNC': <class 'CombinedAggFunc'>, 'COMBINED_PARAMETERIZED_AGG': <class 'CombinedParameterizedAgg'>, 'CONCAT': <class 'Concat'>, 'CONCAT_WS': <class 'ConcatWs'>, 'CONNECT_BY_ROOT': <class 'ConnectByRoot'>, 'CONTAINS': <class 'Contains'>, 'CONVERT': <class 'Convert'>, 'CONVERT_TIMEZONE': <class 'ConvertTimezone'>, 'CONVERT_TO_CHARSET': <class 'ConvertToCharset'>, 'CORR': <class 'Corr'>, 'COUNT': <class 'Count'>, 'COUNT_IF': <class 'CountIf'>, 'COUNTIF': <class 'CountIf'>, 'COVAR_POP': <class 'CovarPop'>, 'COVAR_SAMP': <class 'CovarSamp'>, 'CURRENT_DATE': <class 'CurrentDate'>, 'CURRENT_DATETIME': <class 'CurrentDatetime'>, 'CURRENT_SCHEMA': <class 'CurrentSchema'>, 'CURRENT_TIME': <class 'CurrentTime'>, 'CURRENT_TIMESTAMP': <class 'CurrentTimestamp'>, 'CURRENT_TIMESTAMP_L_T_Z': <class 'CurrentTimestampLTZ'>, 'CURRENT_USER': <class 'CurrentUser'>, 'DATE': <class 'Date'>, 'DATE_ADD': <class 'DateAdd'>, 'DATE_BIN': <class 'DateBin'>, 'DATEDIFF': <class 'DateDiff'>, 'DATE_DIFF': <class 'DateDiff'>, 'DATE_FROM_PARTS': <class 'DateFromParts'>, 'DATEFROMPARTS': <class 'DateFromParts'>, 'DATE_STR_TO_DATE': <class 'DateStrToDate'>, 'DATE_SUB': <class 'DateSub'>, 'DATE_TO_DATE_STR': <class 'DateToDateStr'>, 'DATE_TO_DI': <class 'DateToDi'>, 'DATE_TRUNC': <class 'DateTrunc'>, 'DATETIME': <class 'Datetime'>, 'DATETIME_ADD': <class 'DatetimeAdd'>, 'DATETIME_DIFF': <class 'DatetimeDiff'>, 'DATETIME_SUB': <class 'DatetimeSub'>, 'DATETIME_TRUNC': <class 'DatetimeTrunc'>, 'DAY': <class 'Day'>, 'DAY_OF_MONTH': <class 'DayOfMonth'>, 'DAYOFMONTH': <class 'DayOfMonth'>, 'DAY_OF_WEEK': <class 'DayOfWeek'>, 'DAYOFWEEK': <class 'DayOfWeek'>, 'DAYOFWEEK_ISO': <class 'DayOfWeekIso'>, 'ISODOW': <class 'DayOfWeekIso'>, 'DAY_OF_YEAR': <class 'DayOfYear'>, 'DAYOFYEAR': <class 'DayOfYear'>, 'DECODE': <class 'Decode'>, 'DI_TO_DATE': <class 'DiToDate'>, 'ENCODE': <class 'Encode'>, 'ENDS_WITH': <class 'EndsWith'>, 'ENDSWITH': <class 'EndsWith'>, 'EXISTS': <class 'Exists'>, 'EXP': <class 'Exp'>, 'EXPLODE': <class 'Explode'>, 'EXPLODE_OUTER': <class 'ExplodeOuter'>, 'EXPLODING_GENERATE_SERIES': <class 'ExplodingGenerateSeries'>, 'EXTRACT': <class 'Extract'>, 'FEATURES_AT_TIME': <class 'FeaturesAtTime'>, 'FIRST': <class 'First'>, 'FIRST_VALUE': <class 'FirstValue'>, 'FLATTEN': <class 'Flatten'>, 'FLOOR': <class 'Floor'>, 'FROM_BASE': <class 'FromBase'>, 'FROM_BASE64': <class 'FromBase64'>, 'FROM_ISO8601_TIMESTAMP': <class 'FromISO8601Timestamp'>, 'GAP_FILL': <class 'GapFill'>, 'GENERATE_DATE_ARRAY': <class 'GenerateDateArray'>, 'GENERATE_SERIES': <class 'GenerateSeries'>, 'GENERATE_TIMESTAMP_ARRAY': <class 'GenerateTimestampArray'>, 'GREATEST': <class 'Greatest'>, 'GROUP_CONCAT': <class 'GroupConcat'>, 'HEX': <class 'Hex'>, 'HLL': <class 'Hll'>, 'IF': <class 'If'>, 'IIF': <class 'If'>, 'INITCAP': <class 'Initcap'>, 'INLINE': <class 'Inline'>, 'INT64': <class 'Int64'>, 'IS_ASCII': <class 'IsAscii'>, 'IS_INF': <class 'IsInf'>, 'ISINF': <class 'IsInf'>, 'IS_NAN': <class 'IsNan'>, 'ISNAN': <class 'IsNan'>, 'J_S_O_N_ARRAY': <class 'JSONArray'>, 'J_S_O_N_ARRAY_AGG': <class 'JSONArrayAgg'>, 'JSON_ARRAY_CONTAINS': <class 'JSONArrayContains'>, 'JSONB_CONTAINS': <class 'JSONBContains'>, 'JSONB_EXISTS': <class 'JSONBExists'>, 'JSONB_EXTRACT': <class 'JSONBExtract'>, 'JSONB_EXTRACT_SCALAR': <class 'JSONBExtractScalar'>, 'J_S_O_N_B_OBJECT_AGG': <class 'JSONBObjectAgg'>, 'J_S_O_N_CAST': <class 'JSONCast'>, 'J_S_O_N_EXISTS': <class 'JSONExists'>, 'JSON_EXTRACT': <class 'JSONExtract'>, 'JSON_EXTRACT_ARRAY': <class 'JSONExtractArray'>, 'JSON_EXTRACT_SCALAR': <class 'JSONExtractScalar'>, 'JSON_FORMAT': <class 'JSONFormat'>, 'J_S_O_N_OBJECT': <class 'JSONObject'>, 'J_S_O_N_OBJECT_AGG': <class 'JSONObjectAgg'>, 'J_S_O_N_TABLE': <class 'JSONTable'>, 'J_S_O_N_VALUE_ARRAY': <class 'JSONValueArray'>, 'LAG': <class 'Lag'>, 'LAST': <class 'Last'>, 'LAST_DAY': <class 'LastDay'>, 'LAST_DAY_OF_MONTH': <class 'LastDay'>, 'LAST_VALUE': <class 'LastValue'>, 'LEAD': <class 'Lead'>, 'LEAST': <class 'Least'>, 'LEFT': <class 'Left'>, 'LENGTH': <class 'Length'>, 'LEN': <class 'Length'>, 'CHAR_LENGTH': <class 'Length'>, 'CHARACTER_LENGTH': <class 'Length'>, 'LEVENSHTEIN': <class 'Levenshtein'>, 'LIST': <class 'List'>, 'LN': <class 'Ln'>, 'LOG': <class 'Log'>, 'LOGICAL_AND': <class 'LogicalAnd'>, 'BOOL_AND': <class 'LogicalAnd'>, 'BOOLAND_AGG': <class 'LogicalAnd'>, 'LOGICAL_OR': <class 'LogicalOr'>, 'BOOL_OR': <class 'LogicalOr'>, 'BOOLOR_AGG': <class 'LogicalOr'>, 'LOWER': <class 'Lower'>, 'LCASE': <class 'Lower'>, 'LOWER_HEX': <class 'LowerHex'>, 'MD5': <class 'MD5'>, 'MD5_DIGEST': <class 'MD5Digest'>, 'MAKE_INTERVAL': <class 'MakeInterval'>, 'MAP': <class 'Map'>, 'MAP_FROM_ENTRIES': <class 'MapFromEntries'>, 'MATCH_AGAINST': <class 'MatchAgainst'>, 'MAX': <class 'Max'>, 'MEDIAN': <class 'Median'>, 'MIN': <class 'Min'>, 'MONTH': <class 'Month'>, 'MONTHS_BETWEEN': <class 'MonthsBetween'>, 'NEXT_VALUE_FOR': <class 'NextValueFor'>, 'NORMALIZE': <class 'Normalize'>, 'NTH_VALUE': <class 'NthValue'>, 'NULLIF': <class 'Nullif'>, 'NUMBER_TO_STR': <class 'NumberToStr'>, 'NVL2': <class 'Nvl2'>, 'OBJECT_INSERT': <class 'ObjectInsert'>, 'OPEN_J_S_O_N': <class 'OpenJSON'>, 'OR': <class 'Or'>, 'OVERLAY': <class 'Overlay'>, 'PAD': <class 'Pad'>, 'PARAMETERIZED_AGG': <class 'ParameterizedAgg'>, 'PARSE_JSON': <class 'ParseJSON'>, 'JSON_PARSE': <class 'ParseJSON'>, 'PERCENTILE_CONT': <class 'PercentileCont'>, 'PERCENTILE_DISC': <class 'PercentileDisc'>, 'POSEXPLODE': <class 'Posexplode'>, 'POSEXPLODE_OUTER': <class 'PosexplodeOuter'>, 'POWER': <class 'Pow'>, 'POW': <class 'Pow'>, 'PREDICT': <class 'Predict'>, 'QUANTILE': <class 'Quantile'>, 'QUARTER': <class 'Quarter'>, 'RAND': <class 'Rand'>, 'RANDOM': <class 'Rand'>, 'RANDN': <class 'Randn'>, 'RANGE_N': <class 'RangeN'>, 'READ_CSV': <class 'ReadCSV'>, 'REDUCE': <class 'Reduce'>, 'REGEXP_EXTRACT': <class 'RegexpExtract'>, 'REGEXP_EXTRACT_ALL': <class 'RegexpExtractAll'>, 'REGEXP_I_LIKE': <class 'RegexpILike'>, 'REGEXP_LIKE': <class 'RegexpLike'>, 'REGEXP_REPLACE': <class 'RegexpReplace'>, 'REGEXP_SPLIT': <class 'RegexpSplit'>, 'REPEAT': <class 'Repeat'>, 'REPLACE': <class 'Replace'>, 'RIGHT': <class 'Right'>, 'ROUND': <class 'Round'>, 'ROW_NUMBER': <class 'RowNumber'>, 'SHA': <class 'SHA'>, 'SHA1': <class 'SHA'>, 'SHA2': <class 'SHA2'>, 'SAFE_DIVIDE': <class 'SafeDivide'>, 'SIGN': <class 'Sign'>, 'SIGNUM': <class 'Sign'>, 'SORT_ARRAY': <class 'SortArray'>, 'SPLIT': <class 'Split'>, 'SPLIT_PART': <class 'SplitPart'>, 'SQRT': <class 'Sqrt'>, 'ST_DISTANCE': <class 'StDistance'>, 'ST_POINT': <class 'StPoint'>, 'ST_MAKEPOINT': <class 'StPoint'>, 'STANDARD_HASH': <class 'StandardHash'>, 'STAR_MAP': <class 'StarMap'>, 'STARTS_WITH': <class 'StartsWith'>, 'STARTSWITH': <class 'StartsWith'>, 'STDDEV': <class 'Stddev'>, 'STDEV': <class 'Stddev'>, 'STDDEV_POP': <class 'StddevPop'>, 'STDDEV_SAMP': <class 'StddevSamp'>, 'STR_POSITION': <class 'StrPosition'>, 'STR_TO_DATE': <class 'StrToDate'>, 'STR_TO_MAP': <class 'StrToMap'>, 'STR_TO_TIME': <class 'StrToTime'>, 'STR_TO_UNIX': <class 'StrToUnix'>, 'STRING': <class 'String'>, 'STRING_TO_ARRAY': <class 'StringToArray'>, 'SPLIT_BY_STRING': <class 'StringToArray'>, 'STRTOK_TO_ARRAY': <class 'StringToArray'>, 'STRUCT': <class 'Struct'>, 'STRUCT_EXTRACT': <class 'StructExtract'>, 'STUFF': <class 'Stuff'>, 'INSERT': <class 'Stuff'>, 'SUBSTRING': <class 'Substring'>, 'SUBSTR': <class 'Substring'>, 'SUM': <class 'Sum'>, 'TIME': <class 'Time'>, 'TIME_ADD': <class 'TimeAdd'>, 'TIME_DIFF': <class 'TimeDiff'>, 'TIME_FROM_PARTS': <class 'TimeFromParts'>, 'TIMEFROMPARTS': <class 'TimeFromParts'>, 'TIME_STR_TO_DATE': <class 'TimeStrToDate'>, 'TIME_STR_TO_TIME': <class 'TimeStrToTime'>, 'TIME_STR_TO_UNIX': <class 'TimeStrToUnix'>, 'TIME_SUB': <class 'TimeSub'>, 'TIME_TO_STR': <class 'TimeToStr'>, 'TIME_TO_TIME_STR': <class 'TimeToTimeStr'>, 'TIME_TO_UNIX': <class 'TimeToUnix'>, 'TIME_TRUNC': <class 'TimeTrunc'>, 'TIMESTAMP': <class 'Timestamp'>, 'TIMESTAMP_ADD': <class 'TimestampAdd'>, 'TIMESTAMPDIFF': <class 'TimestampDiff'>, 'TIMESTAMP_DIFF': <class 'TimestampDiff'>, 'TIMESTAMP_FROM_PARTS': <class 'TimestampFromParts'>, 'TIMESTAMPFROMPARTS': <class 'TimestampFromParts'>, 'TIMESTAMP_SUB': <class 'TimestampSub'>, 'TIMESTAMP_TRUNC': <class 'TimestampTrunc'>, 'TO_ARRAY': <class 'ToArray'>, 'TO_BASE64': <class 'ToBase64'>, 'TO_CHAR': <class 'ToChar'>, 'TO_DAYS': <class 'ToDays'>, 'TO_DOUBLE': <class 'ToDouble'>, 'TO_MAP': <class 'ToMap'>, 'TO_NUMBER': <class 'ToNumber'>, 'TRANSFORM': <class 'Transform'>, 'TRIM': <class 'Trim'>, 'TRY': <class 'Try'>, 'TRY_CAST': <class 'TryCast'>, 'TS_OR_DI_TO_DI': <class 'TsOrDiToDi'>, 'TS_OR_DS_ADD': <class 'TsOrDsAdd'>, 'TS_OR_DS_DIFF': <class 'TsOrDsDiff'>, 'TS_OR_DS_TO_DATE': <class 'TsOrDsToDate'>, 'TS_OR_DS_TO_DATE_STR': <class 'TsOrDsToDateStr'>, 'TS_OR_DS_TO_DATETIME': <class 'TsOrDsToDatetime'>, 'TS_OR_DS_TO_TIME': <class 'TsOrDsToTime'>, 'TS_OR_DS_TO_TIMESTAMP': <class 'TsOrDsToTimestamp'>, 'UNHEX': <class 'Unhex'>, 'UNICODE': <class 'Unicode'>, 'UNIX_DATE': <class 'UnixDate'>, 'UNIX_SECONDS': <class 'UnixSeconds'>, 'UNIX_TO_STR': <class 'UnixToStr'>, 'UNIX_TO_TIME': <class 'UnixToTime'>, 'UNIX_TO_TIME_STR': <class 'UnixToTimeStr'>, 'UNNEST': <class 'Unnest'>, 'UPPER': <class 'Upper'>, 'UCASE': <class 'Upper'>, 'UUID': <class 'Uuid'>, 'GEN_RANDOM_UUID': <class 'Uuid'>, 'GENERATE_UUID': <class 'Uuid'>, 'UUID_STRING': <class 'Uuid'>, 'VAR_MAP': <class 'VarMap'>, 'VARIANCE': <class 'Variance'>, 'VARIANCE_SAMP': <class 'Variance'>, 'VAR_SAMP': <class 'Variance'>, 'VARIANCE_POP': <class 'VariancePop'>, 'VAR_POP': <class 'VariancePop'>, 'WEEK': <class 'Week'>, 'WEEK_OF_YEAR': <class 'WeekOfYear'>, 'WEEKOFYEAR': <class 'WeekOfYear'>, 'XMLELEMENT': <class 'XMLElement'>, 'X_M_L_TABLE': <class 'XMLTable'>, 'XOR': <class 'Xor'>, 'YEAR': <class 'Year'>}
JSON_PATH_PARTS = [<class 'JSONPathFilter'>, <class 'JSONPathKey'>, <class 'JSONPathRecursive'>, <class 'JSONPathRoot'>, <class 'JSONPathScript'>, <class 'JSONPathSelector'>, <class 'JSONPathSlice'>, <class 'JSONPathSubscript'>, <class 'JSONPathUnion'>, <class 'JSONPathWildcard'>]
PERCENTILES = (<class 'PercentileCont'>, <class 'PercentileDisc'>)
def maybe_parse( sql_or_expression: Union[str, Expression], *, into: Union[str, Type[Expression], Collection[Union[str, Type[Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> Expression:
7100def maybe_parse(
7101    sql_or_expression: ExpOrStr,
7102    *,
7103    into: t.Optional[IntoType] = None,
7104    dialect: DialectType = None,
7105    prefix: t.Optional[str] = None,
7106    copy: bool = False,
7107    **opts,
7108) -> Expression:
7109    """Gracefully handle a possible string or expression.
7110
7111    Example:
7112        >>> maybe_parse("1")
7113        Literal(this=1, is_string=False)
7114        >>> maybe_parse(to_identifier("x"))
7115        Identifier(this=x, quoted=False)
7116
7117    Args:
7118        sql_or_expression: the SQL code string or an expression
7119        into: the SQLGlot Expression to parse into
7120        dialect: the dialect used to parse the input expressions (in the case that an
7121            input expression is a SQL string).
7122        prefix: a string to prefix the sql with before it gets parsed
7123            (automatically includes a space)
7124        copy: whether to copy the expression.
7125        **opts: other options to use to parse the input expressions (again, in the case
7126            that an input expression is a SQL string).
7127
7128    Returns:
7129        Expression: the parsed or given expression.
7130    """
7131    if isinstance(sql_or_expression, Expression):
7132        if copy:
7133            return sql_or_expression.copy()
7134        return sql_or_expression
7135
7136    if sql_or_expression is None:
7137        raise ParseError("SQL cannot be None")
7138
7139    import sqlglot
7140
7141    sql = str(sql_or_expression)
7142    if prefix:
7143        sql = f"{prefix} {sql}"
7144
7145    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
Literal(this=1, is_string=False)
>>> maybe_parse(to_identifier("x"))
Identifier(this=x, quoted=False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def maybe_copy(instance, copy=True):
7156def maybe_copy(instance, copy=True):
7157    return instance.copy() if copy and instance else instance
def union( *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Union:
7412def union(
7413    *expressions: ExpOrStr,
7414    distinct: bool = True,
7415    dialect: DialectType = None,
7416    copy: bool = True,
7417    **opts,
7418) -> Union:
7419    """
7420    Initializes a syntax tree for the `UNION` operation.
7421
7422    Example:
7423        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
7424        'SELECT * FROM foo UNION SELECT * FROM bla'
7425
7426    Args:
7427        expressions: the SQL code strings, corresponding to the `UNION`'s operands.
7428            If `Expression` instances are passed, they will be used as-is.
7429        distinct: set the DISTINCT flag if and only if this is true.
7430        dialect: the dialect used to parse the input expression.
7431        copy: whether to copy the expression.
7432        opts: other options to use to parse the input expressions.
7433
7434    Returns:
7435        The new Union instance.
7436    """
7437    assert len(expressions) >= 2, "At least two expressions are required by `union`."
7438    return _apply_set_operation(
7439        *expressions, set_operation=Union, distinct=distinct, dialect=dialect, copy=copy, **opts
7440    )

Initializes a syntax tree for the UNION operation.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings, corresponding to the UNION's operands. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Intersect:
7443def intersect(
7444    *expressions: ExpOrStr,
7445    distinct: bool = True,
7446    dialect: DialectType = None,
7447    copy: bool = True,
7448    **opts,
7449) -> Intersect:
7450    """
7451    Initializes a syntax tree for the `INTERSECT` operation.
7452
7453    Example:
7454        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
7455        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
7456
7457    Args:
7458        expressions: the SQL code strings, corresponding to the `INTERSECT`'s operands.
7459            If `Expression` instances are passed, they will be used as-is.
7460        distinct: set the DISTINCT flag if and only if this is true.
7461        dialect: the dialect used to parse the input expression.
7462        copy: whether to copy the expression.
7463        opts: other options to use to parse the input expressions.
7464
7465    Returns:
7466        The new Intersect instance.
7467    """
7468    assert len(expressions) >= 2, "At least two expressions are required by `intersect`."
7469    return _apply_set_operation(
7470        *expressions, set_operation=Intersect, distinct=distinct, dialect=dialect, copy=copy, **opts
7471    )

Initializes a syntax tree for the INTERSECT operation.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings, corresponding to the INTERSECT's operands. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( *expressions: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Except:
7474def except_(
7475    *expressions: ExpOrStr,
7476    distinct: bool = True,
7477    dialect: DialectType = None,
7478    copy: bool = True,
7479    **opts,
7480) -> Except:
7481    """
7482    Initializes a syntax tree for the `EXCEPT` operation.
7483
7484    Example:
7485        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
7486        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
7487
7488    Args:
7489        expressions: the SQL code strings, corresponding to the `EXCEPT`'s operands.
7490            If `Expression` instances are passed, they will be used as-is.
7491        distinct: set the DISTINCT flag if and only if this is true.
7492        dialect: the dialect used to parse the input expression.
7493        copy: whether to copy the expression.
7494        opts: other options to use to parse the input expressions.
7495
7496    Returns:
7497        The new Except instance.
7498    """
7499    assert len(expressions) >= 2, "At least two expressions are required by `except_`."
7500    return _apply_set_operation(
7501        *expressions, set_operation=Except, distinct=distinct, dialect=dialect, copy=copy, **opts
7502    )

Initializes a syntax tree for the EXCEPT operation.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expressions: the SQL code strings, corresponding to the EXCEPT's operands. If Expression instances are passed, they will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Select:
7505def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7506    """
7507    Initializes a syntax tree from one or multiple SELECT expressions.
7508
7509    Example:
7510        >>> select("col1", "col2").from_("tbl").sql()
7511        'SELECT col1, col2 FROM tbl'
7512
7513    Args:
7514        *expressions: the SQL code string to parse as the expressions of a
7515            SELECT statement. If an Expression instance is passed, this is used as-is.
7516        dialect: the dialect used to parse the input expressions (in the case that an
7517            input expression is a SQL string).
7518        **opts: other options to use to parse the input expressions (again, in the case
7519            that an input expression is a SQL string).
7520
7521    Returns:
7522        Select: the syntax tree for the SELECT statement.
7523    """
7524    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Select:
7527def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
7528    """
7529    Initializes a syntax tree from a FROM expression.
7530
7531    Example:
7532        >>> from_("tbl").select("col1", "col2").sql()
7533        'SELECT col1, col2 FROM tbl'
7534
7535    Args:
7536        *expression: the SQL code string to parse as the FROM expressions of a
7537            SELECT statement. If an Expression instance is passed, this is used as-is.
7538        dialect: the dialect used to parse the input expression (in the case that the
7539            input expression is a SQL string).
7540        **opts: other options to use to parse the input expressions (again, in the case
7541            that the input expression is a SQL string).
7542
7543    Returns:
7544        Select: the syntax tree for the SELECT statement.
7545    """
7546    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | Table, properties: Optional[dict] = None, where: Union[str, Expression, NoneType] = None, from_: Union[str, Expression, NoneType] = None, with_: Optional[Dict[str, Union[str, Expression]]] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Update:
7549def update(
7550    table: str | Table,
7551    properties: t.Optional[dict] = None,
7552    where: t.Optional[ExpOrStr] = None,
7553    from_: t.Optional[ExpOrStr] = None,
7554    with_: t.Optional[t.Dict[str, ExpOrStr]] = None,
7555    dialect: DialectType = None,
7556    **opts,
7557) -> Update:
7558    """
7559    Creates an update statement.
7560
7561    Example:
7562        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz_cte", where="baz_cte.id > 1 and my_table.id = baz_cte.id", with_={"baz_cte": "SELECT id FROM foo"}).sql()
7563        "WITH baz_cte AS (SELECT id FROM foo) UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz_cte WHERE baz_cte.id > 1 AND my_table.id = baz_cte.id"
7564
7565    Args:
7566        properties: dictionary of properties to SET which are
7567            auto converted to sql objects eg None -> NULL
7568        where: sql conditional parsed into a WHERE statement
7569        from_: sql statement parsed into a FROM statement
7570        with_: dictionary of CTE aliases / select statements to include in a WITH clause.
7571        dialect: the dialect used to parse the input expressions.
7572        **opts: other options to use to parse the input expressions.
7573
7574    Returns:
7575        Update: the syntax tree for the UPDATE statement.
7576    """
7577    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
7578    if properties:
7579        update_expr.set(
7580            "expressions",
7581            [
7582                EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
7583                for k, v in properties.items()
7584            ],
7585        )
7586    if from_:
7587        update_expr.set(
7588            "from",
7589            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
7590        )
7591    if isinstance(where, Condition):
7592        where = Where(this=where)
7593    if where:
7594        update_expr.set(
7595            "where",
7596            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
7597        )
7598    if with_:
7599        cte_list = [
7600            alias_(CTE(this=maybe_parse(qry, dialect=dialect, **opts)), alias, table=True)
7601            for alias, qry in with_.items()
7602        ]
7603        update_expr.set(
7604            "with",
7605            With(expressions=cte_list),
7606        )
7607    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz_cte", where="baz_cte.id > 1 and my_table.id = baz_cte.id", with_={"baz_cte": "SELECT id FROM foo"}).sql()
"WITH baz_cte AS (SELECT id FROM foo) UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz_cte WHERE baz_cte.id > 1 AND my_table.id = baz_cte.id"
Arguments:
  • properties: dictionary of properties to SET which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • with_: dictionary of CTE aliases / select statements to include in a WITH clause.
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, Expression], where: Union[str, Expression, NoneType] = None, returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Delete:
7610def delete(
7611    table: ExpOrStr,
7612    where: t.Optional[ExpOrStr] = None,
7613    returning: t.Optional[ExpOrStr] = None,
7614    dialect: DialectType = None,
7615    **opts,
7616) -> Delete:
7617    """
7618    Builds a delete statement.
7619
7620    Example:
7621        >>> delete("my_table", where="id > 1").sql()
7622        'DELETE FROM my_table WHERE id > 1'
7623
7624    Args:
7625        where: sql conditional parsed into a WHERE statement
7626        returning: sql conditional parsed into a RETURNING statement
7627        dialect: the dialect used to parse the input expressions.
7628        **opts: other options to use to parse the input expressions.
7629
7630    Returns:
7631        Delete: the syntax tree for the DELETE statement.
7632    """
7633    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
7634    if where:
7635        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
7636    if returning:
7637        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
7638    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, Expression], into: Union[str, Expression], columns: Optional[Sequence[str | Identifier]] = None, overwrite: Optional[bool] = None, returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
7641def insert(
7642    expression: ExpOrStr,
7643    into: ExpOrStr,
7644    columns: t.Optional[t.Sequence[str | Identifier]] = None,
7645    overwrite: t.Optional[bool] = None,
7646    returning: t.Optional[ExpOrStr] = None,
7647    dialect: DialectType = None,
7648    copy: bool = True,
7649    **opts,
7650) -> Insert:
7651    """
7652    Builds an INSERT statement.
7653
7654    Example:
7655        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
7656        'INSERT INTO tbl VALUES (1, 2, 3)'
7657
7658    Args:
7659        expression: the sql string or expression of the INSERT statement
7660        into: the tbl to insert data to.
7661        columns: optionally the table's column names.
7662        overwrite: whether to INSERT OVERWRITE or not.
7663        returning: sql conditional parsed into a RETURNING statement
7664        dialect: the dialect used to parse the input expressions.
7665        copy: whether to copy the expression.
7666        **opts: other options to use to parse the input expressions.
7667
7668    Returns:
7669        Insert: the syntax tree for the INSERT statement.
7670    """
7671    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
7672    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
7673
7674    if columns:
7675        this = Schema(this=this, expressions=[to_identifier(c, copy=copy) for c in columns])
7676
7677    insert = Insert(this=this, expression=expr, overwrite=overwrite)
7678
7679    if returning:
7680        insert = insert.returning(returning, dialect=dialect, copy=False, **opts)
7681
7682    return insert

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • copy: whether to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def merge( *when_exprs: Union[str, Expression], into: Union[str, Expression], using: Union[str, Expression], on: Union[str, Expression], returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Merge:
7685def merge(
7686    *when_exprs: ExpOrStr,
7687    into: ExpOrStr,
7688    using: ExpOrStr,
7689    on: ExpOrStr,
7690    returning: t.Optional[ExpOrStr] = None,
7691    dialect: DialectType = None,
7692    copy: bool = True,
7693    **opts,
7694) -> Merge:
7695    """
7696    Builds a MERGE statement.
7697
7698    Example:
7699        >>> merge("WHEN MATCHED THEN UPDATE SET col1 = source_table.col1",
7700        ...       "WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)",
7701        ...       into="my_table",
7702        ...       using="source_table",
7703        ...       on="my_table.id = source_table.id").sql()
7704        'MERGE INTO my_table USING source_table ON my_table.id = source_table.id WHEN MATCHED THEN UPDATE SET col1 = source_table.col1 WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)'
7705
7706    Args:
7707        *when_exprs: The WHEN clauses specifying actions for matched and unmatched rows.
7708        into: The target table to merge data into.
7709        using: The source table to merge data from.
7710        on: The join condition for the merge.
7711        returning: The columns to return from the merge.
7712        dialect: The dialect used to parse the input expressions.
7713        copy: Whether to copy the expression.
7714        **opts: Other options to use to parse the input expressions.
7715
7716    Returns:
7717        Merge: The syntax tree for the MERGE statement.
7718    """
7719    expressions: t.List[Expression] = []
7720    for when_expr in when_exprs:
7721        expression = maybe_parse(when_expr, dialect=dialect, copy=copy, into=Whens, **opts)
7722        expressions.extend([expression] if isinstance(expression, When) else expression.expressions)
7723
7724    merge = Merge(
7725        this=maybe_parse(into, dialect=dialect, copy=copy, **opts),
7726        using=maybe_parse(using, dialect=dialect, copy=copy, **opts),
7727        on=maybe_parse(on, dialect=dialect, copy=copy, **opts),
7728        whens=Whens(expressions=expressions),
7729    )
7730    if returning:
7731        merge = merge.returning(returning, dialect=dialect, copy=False, **opts)
7732
7733    return merge

Builds a MERGE statement.

Example:
>>> merge("WHEN MATCHED THEN UPDATE SET col1 = source_table.col1",
...       "WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)",
...       into="my_table",
...       using="source_table",
...       on="my_table.id = source_table.id").sql()
'MERGE INTO my_table USING source_table ON my_table.id = source_table.id WHEN MATCHED THEN UPDATE SET col1 = source_table.col1 WHEN NOT MATCHED THEN INSERT (col1) VALUES (source_table.col1)'
Arguments:
  • *when_exprs: The WHEN clauses specifying actions for matched and unmatched rows.
  • into: The target table to merge data into.
  • using: The source table to merge data from.
  • on: The join condition for the merge.
  • returning: The columns to return from the merge.
  • dialect: The dialect used to parse the input expressions.
  • copy: Whether to copy the expression.
  • **opts: Other options to use to parse the input expressions.
Returns:

Merge: The syntax tree for the MERGE statement.

def condition( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
7736def condition(
7737    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
7738) -> Condition:
7739    """
7740    Initialize a logical condition expression.
7741
7742    Example:
7743        >>> condition("x=1").sql()
7744        'x = 1'
7745
7746        This is helpful for composing larger logical syntax trees:
7747        >>> where = condition("x=1")
7748        >>> where = where.and_("y=1")
7749        >>> Select().from_("tbl").select("*").where(where).sql()
7750        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
7751
7752    Args:
7753        *expression: the SQL code string to parse.
7754            If an Expression instance is passed, this is used as-is.
7755        dialect: the dialect used to parse the input expression (in the case that the
7756            input expression is a SQL string).
7757        copy: Whether to copy `expression` (only applies to expressions).
7758        **opts: other options to use to parse the input expressions (again, in the case
7759            that the input expression is a SQL string).
7760
7761    Returns:
7762        The new Condition instance
7763    """
7764    return maybe_parse(
7765        expression,
7766        into=Condition,
7767        dialect=dialect,
7768        copy=copy,
7769        **opts,
7770    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, wrap: bool = True, **opts) -> Condition:
7773def and_(
7774    *expressions: t.Optional[ExpOrStr],
7775    dialect: DialectType = None,
7776    copy: bool = True,
7777    wrap: bool = True,
7778    **opts,
7779) -> Condition:
7780    """
7781    Combine multiple conditions with an AND logical operator.
7782
7783    Example:
7784        >>> and_("x=1", and_("y=1", "z=1")).sql()
7785        'x = 1 AND (y = 1 AND z = 1)'
7786
7787    Args:
7788        *expressions: the SQL code strings to parse.
7789            If an Expression instance is passed, this is used as-is.
7790        dialect: the dialect used to parse the input expression.
7791        copy: whether to copy `expressions` (only applies to Expressions).
7792        wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
7793            precedence issues, but can be turned off when the produced AST is too deep and
7794            causes recursion-related issues.
7795        **opts: other options to use to parse the input expressions.
7796
7797    Returns:
7798        The new condition
7799    """
7800    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, wrap=wrap, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy expressions (only applies to Expressions).
  • wrap: whether to wrap the operands in Parens. This is true by default to avoid precedence issues, but can be turned off when the produced AST is too deep and causes recursion-related issues.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition

def or_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, wrap: bool = True, **opts) -> Condition:
7803def or_(
7804    *expressions: t.Optional[ExpOrStr],
7805    dialect: DialectType = None,
7806    copy: bool = True,
7807    wrap: bool = True,
7808    **opts,
7809) -> Condition:
7810    """
7811    Combine multiple conditions with an OR logical operator.
7812
7813    Example:
7814        >>> or_("x=1", or_("y=1", "z=1")).sql()
7815        'x = 1 OR (y = 1 OR z = 1)'
7816
7817    Args:
7818        *expressions: the SQL code strings to parse.
7819            If an Expression instance is passed, this is used as-is.
7820        dialect: the dialect used to parse the input expression.
7821        copy: whether to copy `expressions` (only applies to Expressions).
7822        wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
7823            precedence issues, but can be turned off when the produced AST is too deep and
7824            causes recursion-related issues.
7825        **opts: other options to use to parse the input expressions.
7826
7827    Returns:
7828        The new condition
7829    """
7830    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, wrap=wrap, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy expressions (only applies to Expressions).
  • wrap: whether to wrap the operands in Parens. This is true by default to avoid precedence issues, but can be turned off when the produced AST is too deep and causes recursion-related issues.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition

def xor( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, wrap: bool = True, **opts) -> Condition:
7833def xor(
7834    *expressions: t.Optional[ExpOrStr],
7835    dialect: DialectType = None,
7836    copy: bool = True,
7837    wrap: bool = True,
7838    **opts,
7839) -> Condition:
7840    """
7841    Combine multiple conditions with an XOR logical operator.
7842
7843    Example:
7844        >>> xor("x=1", xor("y=1", "z=1")).sql()
7845        'x = 1 XOR (y = 1 XOR z = 1)'
7846
7847    Args:
7848        *expressions: the SQL code strings to parse.
7849            If an Expression instance is passed, this is used as-is.
7850        dialect: the dialect used to parse the input expression.
7851        copy: whether to copy `expressions` (only applies to Expressions).
7852        wrap: whether to wrap the operands in `Paren`s. This is true by default to avoid
7853            precedence issues, but can be turned off when the produced AST is too deep and
7854            causes recursion-related issues.
7855        **opts: other options to use to parse the input expressions.
7856
7857    Returns:
7858        The new condition
7859    """
7860    return t.cast(Condition, _combine(expressions, Xor, dialect, copy=copy, wrap=wrap, **opts))

Combine multiple conditions with an XOR logical operator.

Example:
>>> xor("x=1", xor("y=1", "z=1")).sql()
'x = 1 XOR (y = 1 XOR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy expressions (only applies to Expressions).
  • wrap: whether to wrap the operands in Parens. This is true by default to avoid precedence issues, but can be turned off when the produced AST is too deep and causes recursion-related issues.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition

def not_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts) -> Not:
7863def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
7864    """
7865    Wrap a condition with a NOT operator.
7866
7867    Example:
7868        >>> not_("this_suit='black'").sql()
7869        "NOT this_suit = 'black'"
7870
7871    Args:
7872        expression: the SQL code string to parse.
7873            If an Expression instance is passed, this is used as-is.
7874        dialect: the dialect used to parse the input expression.
7875        copy: whether to copy the expression or not.
7876        **opts: other options to use to parse the input expressions.
7877
7878    Returns:
7879        The new condition.
7880    """
7881    this = condition(
7882        expression,
7883        dialect=dialect,
7884        copy=copy,
7885        **opts,
7886    )
7887    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, Expression], copy: bool = True) -> Paren:
7890def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
7891    """
7892    Wrap an expression in parentheses.
7893
7894    Example:
7895        >>> paren("5 + 3").sql()
7896        '(5 + 3)'
7897
7898    Args:
7899        expression: the SQL code string to parse.
7900            If an Expression instance is passed, this is used as-is.
7901        copy: whether to copy the expression or not.
7902
7903    Returns:
7904        The wrapped expression.
7905    """
7906    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

SAFE_IDENTIFIER_RE: Pattern[str] = re.compile('^[_a-zA-Z][\\w]*$')
def to_identifier(name, quoted=None, copy=True):
7922def to_identifier(name, quoted=None, copy=True):
7923    """Builds an identifier.
7924
7925    Args:
7926        name: The name to turn into an identifier.
7927        quoted: Whether to force quote the identifier.
7928        copy: Whether to copy name if it's an Identifier.
7929
7930    Returns:
7931        The identifier ast node.
7932    """
7933
7934    if name is None:
7935        return None
7936
7937    if isinstance(name, Identifier):
7938        identifier = maybe_copy(name, copy)
7939    elif isinstance(name, str):
7940        identifier = Identifier(
7941            this=name,
7942            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
7943        )
7944    else:
7945        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
7946    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether to force quote the identifier.
  • copy: Whether to copy name if it's an Identifier.
Returns:

The identifier ast node.

def parse_identifier( name: str | Identifier, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None) -> Identifier:
7949def parse_identifier(name: str | Identifier, dialect: DialectType = None) -> Identifier:
7950    """
7951    Parses a given string into an identifier.
7952
7953    Args:
7954        name: The name to parse into an identifier.
7955        dialect: The dialect to parse against.
7956
7957    Returns:
7958        The identifier ast node.
7959    """
7960    try:
7961        expression = maybe_parse(name, dialect=dialect, into=Identifier)
7962    except (ParseError, TokenError):
7963        expression = to_identifier(name)
7964
7965    return expression

Parses a given string into an identifier.

Arguments:
  • name: The name to parse into an identifier.
  • dialect: The dialect to parse against.
Returns:

The identifier ast node.

INTERVAL_STRING_RE = re.compile('\\s*(-?[0-9]+(?:\\.[0-9]+)?)\\s*([a-zA-Z]+)\\s*')
def to_interval( interval: str | Literal) -> Interval:
7971def to_interval(interval: str | Literal) -> Interval:
7972    """Builds an interval expression from a string like '1 day' or '5 months'."""
7973    if isinstance(interval, Literal):
7974        if not interval.is_string:
7975            raise ValueError("Invalid interval string.")
7976
7977        interval = interval.this
7978
7979    interval = maybe_parse(f"INTERVAL {interval}")
7980    assert isinstance(interval, Interval)
7981    return interval

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: str | Table, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **kwargs) -> Table:
7984def to_table(
7985    sql_path: str | Table, dialect: DialectType = None, copy: bool = True, **kwargs
7986) -> Table:
7987    """
7988    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
7989    If a table is passed in then that table is returned.
7990
7991    Args:
7992        sql_path: a `[catalog].[schema].[table]` string.
7993        dialect: the source dialect according to which the table name will be parsed.
7994        copy: Whether to copy a table if it is passed in.
7995        kwargs: the kwargs to instantiate the resulting `Table` expression with.
7996
7997    Returns:
7998        A table expression.
7999    """
8000    if isinstance(sql_path, Table):
8001        return maybe_copy(sql_path, copy=copy)
8002
8003    try:
8004        table = maybe_parse(sql_path, into=Table, dialect=dialect)
8005    except ParseError:
8006        catalog, db, this = split_num_words(sql_path, ".", 3)
8007
8008        if not this:
8009            raise
8010
8011        table = table_(this, db=db, catalog=catalog)
8012
8013    for k, v in kwargs.items():
8014        table.set(k, v)
8015
8016    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • copy: Whether to copy a table if it is passed in.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | Column, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **kwargs) -> Column:
8019def to_column(
8020    sql_path: str | Column,
8021    quoted: t.Optional[bool] = None,
8022    dialect: DialectType = None,
8023    copy: bool = True,
8024    **kwargs,
8025) -> Column:
8026    """
8027    Create a column from a `[table].[column]` sql path. Table is optional.
8028    If a column is passed in then that column is returned.
8029
8030    Args:
8031        sql_path: a `[table].[column]` string.
8032        quoted: Whether or not to force quote identifiers.
8033        dialect: the source dialect according to which the column name will be parsed.
8034        copy: Whether to copy a column if it is passed in.
8035        kwargs: the kwargs to instantiate the resulting `Column` expression with.
8036
8037    Returns:
8038        A column expression.
8039    """
8040    if isinstance(sql_path, Column):
8041        return maybe_copy(sql_path, copy=copy)
8042
8043    try:
8044        col = maybe_parse(sql_path, into=Column, dialect=dialect)
8045    except ParseError:
8046        return column(*reversed(sql_path.split(".")), quoted=quoted, **kwargs)
8047
8048    for k, v in kwargs.items():
8049        col.set(k, v)
8050
8051    if quoted:
8052        for i in col.find_all(Identifier):
8053            i.set("quoted", True)
8054
8055    return col

Create a column from a [table].[column] sql path. Table is optional. If a column is passed in then that column is returned.

Arguments:
  • sql_path: a [table].[column] string.
  • quoted: Whether or not to force quote identifiers.
  • dialect: the source dialect according to which the column name will be parsed.
  • copy: Whether to copy a column if it is passed in.
  • kwargs: the kwargs to instantiate the resulting Column expression with.
Returns:

A column expression.

def alias_( expression: Union[str, Expression], alias: Union[Identifier, str, NoneType], table: Union[bool, Sequence[str | Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True, **opts):
8058def alias_(
8059    expression: ExpOrStr,
8060    alias: t.Optional[str | Identifier],
8061    table: bool | t.Sequence[str | Identifier] = False,
8062    quoted: t.Optional[bool] = None,
8063    dialect: DialectType = None,
8064    copy: bool = True,
8065    **opts,
8066):
8067    """Create an Alias expression.
8068
8069    Example:
8070        >>> alias_('foo', 'bar').sql()
8071        'foo AS bar'
8072
8073        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
8074        '(SELECT 1, 2) AS bar(a, b)'
8075
8076    Args:
8077        expression: the SQL code strings to parse.
8078            If an Expression instance is passed, this is used as-is.
8079        alias: the alias name to use. If the name has
8080            special characters it is quoted.
8081        table: Whether to create a table alias, can also be a list of columns.
8082        quoted: whether to quote the alias
8083        dialect: the dialect used to parse the input expression.
8084        copy: Whether to copy the expression.
8085        **opts: other options to use to parse the input expressions.
8086
8087    Returns:
8088        Alias: the aliased expression
8089    """
8090    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
8091    alias = to_identifier(alias, quoted=quoted)
8092
8093    if table:
8094        table_alias = TableAlias(this=alias)
8095        exp.set("alias", table_alias)
8096
8097        if not isinstance(table, bool):
8098            for column in table:
8099                table_alias.append("columns", to_identifier(column, quoted=quoted))
8100
8101        return exp
8102
8103    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
8104    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
8105    # for the complete Window expression.
8106    #
8107    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
8108
8109    if "alias" in exp.arg_types and not isinstance(exp, Window):
8110        exp.set("alias", alias)
8111        return exp
8112    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether to create a table alias, can also be a list of columns.
  • quoted: whether to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, Expression], alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Select:
8115def subquery(
8116    expression: ExpOrStr,
8117    alias: t.Optional[Identifier | str] = None,
8118    dialect: DialectType = None,
8119    **opts,
8120) -> Select:
8121    """
8122    Build a subquery expression that's selected from.
8123
8124    Example:
8125        >>> subquery('select x from tbl', 'bar').select('x').sql()
8126        'SELECT x FROM (SELECT x FROM tbl) AS bar'
8127
8128    Args:
8129        expression: the SQL code strings to parse.
8130            If an Expression instance is passed, this is used as-is.
8131        alias: the alias name to use.
8132        dialect: the dialect used to parse the input expression.
8133        **opts: other options to use to parse the input expressions.
8134
8135    Returns:
8136        A new Select instance with the subquery expression included.
8137    """
8138
8139    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias, **opts)
8140    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression that's selected from.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col, table=None, db=None, catalog=None, *, fields=None, quoted=None, copy=True):
8171def column(
8172    col,
8173    table=None,
8174    db=None,
8175    catalog=None,
8176    *,
8177    fields=None,
8178    quoted=None,
8179    copy=True,
8180):
8181    """
8182    Build a Column.
8183
8184    Args:
8185        col: Column name.
8186        table: Table name.
8187        db: Database name.
8188        catalog: Catalog name.
8189        fields: Additional fields using dots.
8190        quoted: Whether to force quotes on the column's identifiers.
8191        copy: Whether to copy identifiers if passed in.
8192
8193    Returns:
8194        The new Column instance.
8195    """
8196    if not isinstance(col, Star):
8197        col = to_identifier(col, quoted=quoted, copy=copy)
8198
8199    this = Column(
8200        this=col,
8201        table=to_identifier(table, quoted=quoted, copy=copy),
8202        db=to_identifier(db, quoted=quoted, copy=copy),
8203        catalog=to_identifier(catalog, quoted=quoted, copy=copy),
8204    )
8205
8206    if fields:
8207        this = Dot.build(
8208            (this, *(to_identifier(field, quoted=quoted, copy=copy) for field in fields))
8209        )
8210    return this

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • fields: Additional fields using dots.
  • quoted: Whether to force quotes on the column's identifiers.
  • copy: Whether to copy identifiers if passed in.
Returns:

The new Column instance.

def cast( expression: Union[str, Expression], to: Union[str, Identifier, Dot, DataType, DataType.Type], copy: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **opts) -> Cast:
8213def cast(
8214    expression: ExpOrStr, to: DATA_TYPE, copy: bool = True, dialect: DialectType = None, **opts
8215) -> Cast:
8216    """Cast an expression to a data type.
8217
8218    Example:
8219        >>> cast('x + 1', 'int').sql()
8220        'CAST(x + 1 AS INT)'
8221
8222    Args:
8223        expression: The expression to cast.
8224        to: The datatype to cast to.
8225        copy: Whether to copy the supplied expressions.
8226        dialect: The target dialect. This is used to prevent a re-cast in the following scenario:
8227            - The expression to be cast is already a exp.Cast expression
8228            - The existing cast is to a type that is logically equivalent to new type
8229
8230            For example, if :expression='CAST(x as DATETIME)' and :to=Type.TIMESTAMP,
8231            but in the target dialect DATETIME is mapped to TIMESTAMP, then we will NOT return `CAST(x (as DATETIME) as TIMESTAMP)`
8232            and instead just return the original expression `CAST(x as DATETIME)`.
8233
8234            This is to prevent it being output as a double cast `CAST(x (as TIMESTAMP) as TIMESTAMP)` once the DATETIME -> TIMESTAMP
8235            mapping is applied in the target dialect generator.
8236
8237    Returns:
8238        The new Cast instance.
8239    """
8240    expr = maybe_parse(expression, copy=copy, dialect=dialect, **opts)
8241    data_type = DataType.build(to, copy=copy, dialect=dialect, **opts)
8242
8243    # dont re-cast if the expression is already a cast to the correct type
8244    if isinstance(expr, Cast):
8245        from sqlglot.dialects.dialect import Dialect
8246
8247        target_dialect = Dialect.get_or_raise(dialect)
8248        type_mapping = target_dialect.generator_class.TYPE_MAPPING
8249
8250        existing_cast_type: DataType.Type = expr.to.this
8251        new_cast_type: DataType.Type = data_type.this
8252        types_are_equivalent = type_mapping.get(
8253            existing_cast_type, existing_cast_type.value
8254        ) == type_mapping.get(new_cast_type, new_cast_type.value)
8255
8256        if expr.is_type(data_type) or types_are_equivalent:
8257            return expr
8258
8259    expr = Cast(this=expr, to=data_type)
8260    expr.type = data_type
8261
8262    return expr

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
  • copy: Whether to copy the supplied expressions.
  • dialect: The target dialect. This is used to prevent a re-cast in the following scenario:

    • The expression to be cast is already a exp.Cast expression
    • The existing cast is to a type that is logically equivalent to new type

    For example, if :expression='CAST(x as DATETIME)' and :to=Type.TIMESTAMP, but in the target dialect DATETIME is mapped to TIMESTAMP, then we will NOT return CAST(x (as DATETIME) as TIMESTAMP) and instead just return the original expression CAST(x as DATETIME).

    This is to prevent it being output as a double cast CAST(x (as TIMESTAMP) as TIMESTAMP) once the DATETIME -> TIMESTAMP mapping is applied in the target dialect generator.

Returns:

The new Cast instance.

def table_( table: Identifier | str, db: Union[Identifier, str, NoneType] = None, catalog: Union[Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[Identifier, str, NoneType] = None) -> Table:
8265def table_(
8266    table: Identifier | str,
8267    db: t.Optional[Identifier | str] = None,
8268    catalog: t.Optional[Identifier | str] = None,
8269    quoted: t.Optional[bool] = None,
8270    alias: t.Optional[Identifier | str] = None,
8271) -> Table:
8272    """Build a Table.
8273
8274    Args:
8275        table: Table name.
8276        db: Database name.
8277        catalog: Catalog name.
8278        quote: Whether to force quotes on the table's identifiers.
8279        alias: Table's alias.
8280
8281    Returns:
8282        The new Table instance.
8283    """
8284    return Table(
8285        this=to_identifier(table, quoted=quoted) if table else None,
8286        db=to_identifier(db, quoted=quoted) if db else None,
8287        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
8288        alias=TableAlias(this=to_identifier(alias)) if alias else None,
8289    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, DataType], NoneType] = None) -> Values:
8292def values(
8293    values: t.Iterable[t.Tuple[t.Any, ...]],
8294    alias: t.Optional[str] = None,
8295    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
8296) -> Values:
8297    """Build VALUES statement.
8298
8299    Example:
8300        >>> values([(1, '2')]).sql()
8301        "VALUES (1, '2')"
8302
8303    Args:
8304        values: values statements that will be converted to SQL
8305        alias: optional alias
8306        columns: Optional list of ordered column names or ordered dictionary of column names to types.
8307         If either are provided then an alias is also required.
8308
8309    Returns:
8310        Values: the Values expression object
8311    """
8312    if columns and not alias:
8313        raise ValueError("Alias is required when providing columns")
8314
8315    return Values(
8316        expressions=[convert(tup) for tup in values],
8317        alias=(
8318            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
8319            if columns
8320            else (TableAlias(this=to_identifier(alias)) if alias else None)
8321        ),
8322    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, Expression, NoneType]) -> Var:
8325def var(name: t.Optional[ExpOrStr]) -> Var:
8326    """Build a SQL variable.
8327
8328    Example:
8329        >>> repr(var('x'))
8330        'Var(this=x)'
8331
8332        >>> repr(var(column('x', table='y')))
8333        'Var(this=x)'
8334
8335    Args:
8336        name: The name of the var or an expression who's name will become the var.
8337
8338    Returns:
8339        The new variable node.
8340    """
8341    if not name:
8342        raise ValueError("Cannot convert empty name into var.")
8343
8344    if isinstance(name, Expression):
8345        name = name.name
8346    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'Var(this=x)'
>>> repr(var(column('x', table='y')))
'Var(this=x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | Table, new_name: str | Table, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None) -> Alter:
8349def rename_table(
8350    old_name: str | Table,
8351    new_name: str | Table,
8352    dialect: DialectType = None,
8353) -> Alter:
8354    """Build ALTER TABLE... RENAME... expression
8355
8356    Args:
8357        old_name: The old name of the table
8358        new_name: The new name of the table
8359        dialect: The dialect to parse the table.
8360
8361    Returns:
8362        Alter table expression
8363    """
8364    old_table = to_table(old_name, dialect=dialect)
8365    new_table = to_table(new_name, dialect=dialect)
8366    return Alter(
8367        this=old_table,
8368        kind="TABLE",
8369        actions=[
8370            AlterRename(this=new_table),
8371        ],
8372    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
  • dialect: The dialect to parse the table.
Returns:

Alter table expression

def rename_column( table_name: str | Table, old_column_name: str | Column, new_column_name: str | Column, exists: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None) -> Alter:
8375def rename_column(
8376    table_name: str | Table,
8377    old_column_name: str | Column,
8378    new_column_name: str | Column,
8379    exists: t.Optional[bool] = None,
8380    dialect: DialectType = None,
8381) -> Alter:
8382    """Build ALTER TABLE... RENAME COLUMN... expression
8383
8384    Args:
8385        table_name: Name of the table
8386        old_column: The old name of the column
8387        new_column: The new name of the column
8388        exists: Whether to add the `IF EXISTS` clause
8389        dialect: The dialect to parse the table/column.
8390
8391    Returns:
8392        Alter table expression
8393    """
8394    table = to_table(table_name, dialect=dialect)
8395    old_column = to_column(old_column_name, dialect=dialect)
8396    new_column = to_column(new_column_name, dialect=dialect)
8397    return Alter(
8398        this=table,
8399        kind="TABLE",
8400        actions=[
8401            RenameColumn(this=old_column, to=new_column, exists=exists),
8402        ],
8403    )

Build ALTER TABLE... RENAME COLUMN... expression

Arguments:
  • table_name: Name of the table
  • old_column: The old name of the column
  • new_column: The new name of the column
  • exists: Whether to add the IF EXISTS clause
  • dialect: The dialect to parse the table/column.
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> Expression:
8406def convert(value: t.Any, copy: bool = False) -> Expression:
8407    """Convert a python value into an expression object.
8408
8409    Raises an error if a conversion is not possible.
8410
8411    Args:
8412        value: A python object.
8413        copy: Whether to copy `value` (only applies to Expressions and collections).
8414
8415    Returns:
8416        The equivalent expression object.
8417    """
8418    if isinstance(value, Expression):
8419        return maybe_copy(value, copy)
8420    if isinstance(value, str):
8421        return Literal.string(value)
8422    if isinstance(value, bool):
8423        return Boolean(this=value)
8424    if value is None or (isinstance(value, float) and math.isnan(value)):
8425        return null()
8426    if isinstance(value, numbers.Number):
8427        return Literal.number(value)
8428    if isinstance(value, bytes):
8429        return HexString(this=value.hex())
8430    if isinstance(value, datetime.datetime):
8431        datetime_literal = Literal.string(value.isoformat(sep=" "))
8432
8433        tz = None
8434        if value.tzinfo:
8435            # this works for zoneinfo.ZoneInfo, pytz.timezone and datetime.datetime.utc to return IANA timezone names like "America/Los_Angeles"
8436            # instead of abbreviations like "PDT". This is for consistency with other timezone handling functions in SQLGlot
8437            tz = Literal.string(str(value.tzinfo))
8438
8439        return TimeStrToTime(this=datetime_literal, zone=tz)
8440    if isinstance(value, datetime.date):
8441        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
8442        return DateStrToDate(this=date_literal)
8443    if isinstance(value, tuple):
8444        if hasattr(value, "_fields"):
8445            return Struct(
8446                expressions=[
8447                    PropertyEQ(
8448                        this=to_identifier(k), expression=convert(getattr(value, k), copy=copy)
8449                    )
8450                    for k in value._fields
8451                ]
8452            )
8453        return Tuple(expressions=[convert(v, copy=copy) for v in value])
8454    if isinstance(value, list):
8455        return Array(expressions=[convert(v, copy=copy) for v in value])
8456    if isinstance(value, dict):
8457        return Map(
8458            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
8459            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
8460        )
8461    if hasattr(value, "__dict__"):
8462        return Struct(
8463            expressions=[
8464                PropertyEQ(this=to_identifier(k), expression=convert(v, copy=copy))
8465                for k, v in value.__dict__.items()
8466            ]
8467        )
8468    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether to copy value (only applies to Expressions and collections).
Returns:

The equivalent expression object.

def replace_children( expression: Expression, fun: Callable, *args, **kwargs) -> None:
8471def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
8472    """
8473    Replace children of an expression with the result of a lambda fun(child) -> exp.
8474    """
8475    for k, v in tuple(expression.args.items()):
8476        is_list_arg = type(v) is list
8477
8478        child_nodes = v if is_list_arg else [v]
8479        new_child_nodes = []
8480
8481        for cn in child_nodes:
8482            if isinstance(cn, Expression):
8483                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
8484                    new_child_nodes.append(child_node)
8485            else:
8486                new_child_nodes.append(cn)
8487
8488        expression.set(k, new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0))

Replace children of an expression with the result of a lambda fun(child) -> exp.

def replace_tree( expression: Expression, fun: Callable, prune: Optional[Callable[[Expression], bool]] = None) -> Expression:
8491def replace_tree(
8492    expression: Expression,
8493    fun: t.Callable,
8494    prune: t.Optional[t.Callable[[Expression], bool]] = None,
8495) -> Expression:
8496    """
8497    Replace an entire tree with the result of function calls on each node.
8498
8499    This will be traversed in reverse dfs, so leaves first.
8500    If new nodes are created as a result of function calls, they will also be traversed.
8501    """
8502    stack = list(expression.dfs(prune=prune))
8503
8504    while stack:
8505        node = stack.pop()
8506        new_node = fun(node)
8507
8508        if new_node is not node:
8509            node.replace(new_node)
8510
8511            if isinstance(new_node, Expression):
8512                stack.append(new_node)
8513
8514    return new_node

Replace an entire tree with the result of function calls on each node.

This will be traversed in reverse dfs, so leaves first. If new nodes are created as a result of function calls, they will also be traversed.

def column_table_names( expression: Expression, exclude: str = '') -> Set[str]:
8517def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
8518    """
8519    Return all table names referenced through columns in an expression.
8520
8521    Example:
8522        >>> import sqlglot
8523        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
8524        ['a', 'c']
8525
8526    Args:
8527        expression: expression to find table names.
8528        exclude: a table name to exclude
8529
8530    Returns:
8531        A list of unique names.
8532    """
8533    return {
8534        table
8535        for table in (column.table for column in expression.find_all(Column))
8536        if table and table != exclude
8537    }

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
['a', 'c']
Arguments:
  • expression: expression to find table names.
  • exclude: a table name to exclude
Returns:

A list of unique names.

def table_name( table: Table | str, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, identify: bool = False) -> str:
8540def table_name(table: Table | str, dialect: DialectType = None, identify: bool = False) -> str:
8541    """Get the full name of a table as a string.
8542
8543    Args:
8544        table: Table expression node or string.
8545        dialect: The dialect to generate the table name for.
8546        identify: Determines when an identifier should be quoted. Possible values are:
8547            False (default): Never quote, except in cases where it's mandatory by the dialect.
8548            True: Always quote.
8549
8550    Examples:
8551        >>> from sqlglot import exp, parse_one
8552        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
8553        'a.b.c'
8554
8555    Returns:
8556        The table name.
8557    """
8558
8559    table = maybe_parse(table, into=Table, dialect=dialect)
8560
8561    if not table:
8562        raise ValueError(f"Cannot parse {table}")
8563
8564    return ".".join(
8565        (
8566            part.sql(dialect=dialect, identify=True, copy=False, comments=False)
8567            if identify or not SAFE_IDENTIFIER_RE.match(part.name)
8568            else part.name
8569        )
8570        for part in table.parts
8571    )

Get the full name of a table as a string.

Arguments:
  • table: Table expression node or string.
  • dialect: The dialect to generate the table name for.
  • identify: Determines when an identifier should be quoted. Possible values are: False (default): Never quote, except in cases where it's mandatory by the dialect. True: Always quote.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def normalize_table_name( table: str | Table, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True) -> str:
8574def normalize_table_name(table: str | Table, dialect: DialectType = None, copy: bool = True) -> str:
8575    """Returns a case normalized table name without quotes.
8576
8577    Args:
8578        table: the table to normalize
8579        dialect: the dialect to use for normalization rules
8580        copy: whether to copy the expression.
8581
8582    Examples:
8583        >>> normalize_table_name("`A-B`.c", dialect="bigquery")
8584        'A-B.c'
8585    """
8586    from sqlglot.optimizer.normalize_identifiers import normalize_identifiers
8587
8588    return ".".join(
8589        p.name
8590        for p in normalize_identifiers(
8591            to_table(table, dialect=dialect, copy=copy), dialect=dialect
8592        ).parts
8593    )

Returns a case normalized table name without quotes.

Arguments:
  • table: the table to normalize
  • dialect: the dialect to use for normalization rules
  • copy: whether to copy the expression.
Examples:
>>> normalize_table_name("`A-B`.c", dialect="bigquery")
'A-B.c'
def replace_tables( expression: ~E, mapping: Dict[str, str], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True) -> ~E:
8596def replace_tables(
8597    expression: E, mapping: t.Dict[str, str], dialect: DialectType = None, copy: bool = True
8598) -> E:
8599    """Replace all tables in expression according to the mapping.
8600
8601    Args:
8602        expression: expression node to be transformed and replaced.
8603        mapping: mapping of table names.
8604        dialect: the dialect of the mapping table
8605        copy: whether to copy the expression.
8606
8607    Examples:
8608        >>> from sqlglot import exp, parse_one
8609        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
8610        'SELECT * FROM c /* a.b */'
8611
8612    Returns:
8613        The mapped expression.
8614    """
8615
8616    mapping = {normalize_table_name(k, dialect=dialect): v for k, v in mapping.items()}
8617
8618    def _replace_tables(node: Expression) -> Expression:
8619        if isinstance(node, Table) and node.meta.get("replace") is not False:
8620            original = normalize_table_name(node, dialect=dialect)
8621            new_name = mapping.get(original)
8622
8623            if new_name:
8624                table = to_table(
8625                    new_name,
8626                    **{k: v for k, v in node.args.items() if k not in TABLE_PARTS},
8627                    dialect=dialect,
8628                )
8629                table.add_comments([original])
8630                return table
8631        return node
8632
8633    return expression.transform(_replace_tables, copy=copy)  # type: ignore

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
  • dialect: the dialect of the mapping table
  • copy: whether to copy the expression.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c /* a.b */'
Returns:

The mapped expression.

def replace_placeholders( expression: Expression, *args, **kwargs) -> Expression:
8636def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
8637    """Replace placeholders in an expression.
8638
8639    Args:
8640        expression: expression node to be transformed and replaced.
8641        args: positional names that will substitute unnamed placeholders in the given order.
8642        kwargs: keyword arguments that will substitute named placeholders.
8643
8644    Examples:
8645        >>> from sqlglot import exp, parse_one
8646        >>> replace_placeholders(
8647        ...     parse_one("select * from :tbl where ? = ?"),
8648        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
8649        ... ).sql()
8650        "SELECT * FROM foo WHERE str_col = 'b'"
8651
8652    Returns:
8653        The mapped expression.
8654    """
8655
8656    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
8657        if isinstance(node, Placeholder):
8658            if node.this:
8659                new_name = kwargs.get(node.this)
8660                if new_name is not None:
8661                    return convert(new_name)
8662            else:
8663                try:
8664                    return convert(next(args))
8665                except StopIteration:
8666                    pass
8667        return node
8668
8669    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: Expression, sources: Dict[str, Union[Query, Callable[[], Query]]], dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, copy: bool = True) -> Expression:
8672def expand(
8673    expression: Expression,
8674    sources: t.Dict[str, Query | t.Callable[[], Query]],
8675    dialect: DialectType = None,
8676    copy: bool = True,
8677) -> Expression:
8678    """Transforms an expression by expanding all referenced sources into subqueries.
8679
8680    Examples:
8681        >>> from sqlglot import parse_one
8682        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
8683        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
8684
8685        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
8686        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
8687
8688    Args:
8689        expression: The expression to expand.
8690        sources: A dict of name to query or a callable that provides a query on demand.
8691        dialect: The dialect of the sources dict or the callable.
8692        copy: Whether to copy the expression during transformation. Defaults to True.
8693
8694    Returns:
8695        The transformed expression.
8696    """
8697    normalized_sources = {normalize_table_name(k, dialect=dialect): v for k, v in sources.items()}
8698
8699    def _expand(node: Expression):
8700        if isinstance(node, Table):
8701            name = normalize_table_name(node, dialect=dialect)
8702            source = normalized_sources.get(name)
8703
8704            if source:
8705                # Create a subquery with the same alias (or table name if no alias)
8706                parsed_source = source() if callable(source) else source
8707                subquery = parsed_source.subquery(node.alias or name)
8708                subquery.comments = [f"source: {name}"]
8709
8710                # Continue expanding within the subquery
8711                return subquery.transform(_expand, copy=False)
8712
8713        return node
8714
8715    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dict of name to query or a callable that provides a query on demand.
  • dialect: The dialect of the sources dict or the callable.
  • copy: Whether to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, copy: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **kwargs) -> Func:
8718def func(name: str, *args, copy: bool = True, dialect: DialectType = None, **kwargs) -> Func:
8719    """
8720    Returns a Func expression.
8721
8722    Examples:
8723        >>> func("abs", 5).sql()
8724        'ABS(5)'
8725
8726        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
8727        'CAST(5 AS DOUBLE)'
8728
8729    Args:
8730        name: the name of the function to build.
8731        args: the args used to instantiate the function of interest.
8732        copy: whether to copy the argument expressions.
8733        dialect: the source dialect.
8734        kwargs: the kwargs used to instantiate the function of interest.
8735
8736    Note:
8737        The arguments `args` and `kwargs` are mutually exclusive.
8738
8739    Returns:
8740        An instance of the function of interest, or an anonymous function, if `name` doesn't
8741        correspond to an existing `sqlglot.expressions.Func` class.
8742    """
8743    if args and kwargs:
8744        raise ValueError("Can't use both args and kwargs to instantiate a function.")
8745
8746    from sqlglot.dialects.dialect import Dialect
8747
8748    dialect = Dialect.get_or_raise(dialect)
8749
8750    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect, copy=copy) for arg in args]
8751    kwargs = {key: maybe_parse(value, dialect=dialect, copy=copy) for key, value in kwargs.items()}
8752
8753    constructor = dialect.parser_class.FUNCTIONS.get(name.upper())
8754    if constructor:
8755        if converted:
8756            if "dialect" in constructor.__code__.co_varnames:
8757                function = constructor(converted, dialect=dialect)
8758            else:
8759                function = constructor(converted)
8760        elif constructor.__name__ == "from_arg_list":
8761            function = constructor.__self__(**kwargs)  # type: ignore
8762        else:
8763            constructor = FUNCTION_BY_NAME.get(name.upper())
8764            if constructor:
8765                function = constructor(**kwargs)
8766            else:
8767                raise ValueError(
8768                    f"Unable to convert '{name}' into a Func. Either manually construct "
8769                    "the Func expression of interest or parse the function call."
8770                )
8771    else:
8772        kwargs = kwargs or {"expressions": converted}
8773        function = Anonymous(this=name, **kwargs)
8774
8775    for error_message in function.error_messages(converted):
8776        raise ValueError(error_message)
8777
8778    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • copy: whether to copy the argument expressions.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing sqlglot.expressions.Func class.

def case( expression: Union[str, Expression, NoneType] = None, **opts) -> Case:
8781def case(
8782    expression: t.Optional[ExpOrStr] = None,
8783    **opts,
8784) -> Case:
8785    """
8786    Initialize a CASE statement.
8787
8788    Example:
8789        case().when("a = 1", "foo").else_("bar")
8790
8791    Args:
8792        expression: Optionally, the input expression (not all dialects support this)
8793        **opts: Extra keyword arguments for parsing `expression`
8794    """
8795    if expression is not None:
8796        this = maybe_parse(expression, **opts)
8797    else:
8798        this = None
8799    return Case(this=this, ifs=[])

Initialize a CASE statement.

Example:

case().when("a = 1", "foo").else_("bar")

Arguments:
  • expression: Optionally, the input expression (not all dialects support this)
  • **opts: Extra keyword arguments for parsing expression
def array( *expressions: Union[str, Expression], copy: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **kwargs) -> Array:
8802def array(
8803    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8804) -> Array:
8805    """
8806    Returns an array.
8807
8808    Examples:
8809        >>> array(1, 'x').sql()
8810        'ARRAY(1, x)'
8811
8812    Args:
8813        expressions: the expressions to add to the array.
8814        copy: whether to copy the argument expressions.
8815        dialect: the source dialect.
8816        kwargs: the kwargs used to instantiate the function of interest.
8817
8818    Returns:
8819        An array expression.
8820    """
8821    return Array(
8822        expressions=[
8823            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8824            for expression in expressions
8825        ]
8826    )

Returns an array.

Examples:
>>> array(1, 'x').sql()
'ARRAY(1, x)'
Arguments:
  • expressions: the expressions to add to the array.
  • copy: whether to copy the argument expressions.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Returns:

An array expression.

def tuple_( *expressions: Union[str, Expression], copy: bool = True, dialect: Union[str, sqlglot.dialects.Dialect, Type[sqlglot.dialects.Dialect], NoneType] = None, **kwargs) -> Tuple:
8829def tuple_(
8830    *expressions: ExpOrStr, copy: bool = True, dialect: DialectType = None, **kwargs
8831) -> Tuple:
8832    """
8833    Returns an tuple.
8834
8835    Examples:
8836        >>> tuple_(1, 'x').sql()
8837        '(1, x)'
8838
8839    Args:
8840        expressions: the expressions to add to the tuple.
8841        copy: whether to copy the argument expressions.
8842        dialect: the source dialect.
8843        kwargs: the kwargs used to instantiate the function of interest.
8844
8845    Returns:
8846        A tuple expression.
8847    """
8848    return Tuple(
8849        expressions=[
8850            maybe_parse(expression, copy=copy, dialect=dialect, **kwargs)
8851            for expression in expressions
8852        ]
8853    )

Returns an tuple.

Examples:
>>> tuple_(1, 'x').sql()
'(1, x)'
Arguments:
  • expressions: the expressions to add to the tuple.
  • copy: whether to copy the argument expressions.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Returns:

A tuple expression.

def true() -> Boolean:
8856def true() -> Boolean:
8857    """
8858    Returns a true Boolean expression.
8859    """
8860    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> Boolean:
8863def false() -> Boolean:
8864    """
8865    Returns a false Boolean expression.
8866    """
8867    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> Null:
8870def null() -> Null:
8871    """
8872    Returns a Null expression.
8873    """
8874    return Null()

Returns a Null expression.

NONNULL_CONSTANTS = (<class 'Literal'>, <class 'Boolean'>)
CONSTANTS = (<class 'Literal'>, <class 'Boolean'>, <class 'Null'>)